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Abstract

Forecast stability, that is the consistency of predictions over time, is essential in business settings

where sudden shifts in forecasts can disrupt planning and erode trust in predictive systems. Despite

its importance, stability is often overlooked in favor of accuracy, particularly in global forecasting

models. In this study, we evaluate the stability of point and probabilistic forecasts across different

retraining frequencies and ensemble strategies using two large retail datasets (M5 and VN1). To do

this, we introduce a new metric for probabilistic stability (MQC) and analyze ten different global

models and four ensemble configurations. The results show that less frequent retraining not only

preserves but often improves forecast stability, while ensembles, especially those combining diverse

pool of models, further enhance consistency without sacrificing accuracy. These findings challenge

the need for continuous retraining and highlight ensemble diversity as a key factor in reducing

forecast stability. The study promotes a shift toward stability-aware forecasting practices, offering

practical guidelines for building more robust and sustainable prediction systems.

Keywords: Time series, Demand forecasting, Forecasting competitions, Cross-learning, Global

models, Forecast stability, Vertical stability, Machine learning, Deep learning, Conformal

predictions

JEL: C53, C52, C55

1. Introduction

In recent years, global forecasting models, those trained across multiple time series simultaneously,

have emerged as a powerful alternative to traditional local approaches, particularly in large-scale

applications such as retail demand forecasting. While their accuracy and efficiency have been widely
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studied, less attention has been paid to the stability of their forecasts over time. In many operational

contexts, forecasts are produced regularly and serve as the foundation for critical business decisions,

from inventory planning to resource allocation. In such settings, forecast stability becomes a

key requirement; not only should forecasts be accurate, but they should also remain reasonably

consistent over time. Indeed, forecast stability refers to the consistency of predictions produced

by a forecasting model as new data becomes available. As defined by Godahewa, Bergmeir, Erkin

Baz, Zhu, Song, Garćıa & Benavides (2025), forecast stability can be categorized into two primary

forms: vertical stability, which concerns the consistency of forecasts for the same target date across

different forecast origins, and horizontal stability, which addresses the smoothness of forecasts across

the forecast horizon from a single origin. Both types play a distinct role: vertical stability helps

avoid costly forecast revisions that can disrupt planning cycles, while horizontal stability prevents

erratic behavior across time steps that could lead to inefficient operations and amplification of

demand fluctuations, such as the bullwhip effect in supply chains (Lee, Padmanabhan & Whang,

1997). In particular, vertical stability may also be seen as temporal robustness, in the sense that a

forecasting model is robust to updates (or retraining) as new observations are available, a property

that is critical in practice for avoiding frequent changes in business decisions. Forecast instability,

indeed, can have serious consequences. Unstable forecasts may lead to frequent and expensive

adjustments in supply chain plans, diminish trust in the forecasting system, and complicating the

decision-making processes, leading to suboptimal business outcomes.

Nevertheless, despite the importance of forecast stability, it is still common practice to evaluate

forecasting models only on their accuracy, even in frequent retraining settings where stability

is more likely to be compromised. This can also be due to an inherent perception that there

exists a trade-off between accuracy and stability. As new information becomes available, updated

forecasts may naturally differ from earlier versions, ideally improving in accuracy at the expense

of stability. Conversely, overly stable forecasts might sacrifice accuracy by ignoring valuable new

information. Ensembling techniques, which integrate multiple forecasts from different models, have

been proposed as a mechanism to concurrently reduce bias and variance while enhancing stability

(Wang, Hyndman, Li & Kang, 2023). By aggregating diverse predictions, ensembling methods

can alleviate the impact of individual model volatility and potentially achieve a more favorable

equilibrium between accuracy and stability. Even if the trade-off between forecasting accuracy and
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stability presents a significant challenge for organizations seeking to balance predictive performance

with operational consistency, recent research suggests that stability and accuracy are not necessarily

in conflict, and both can be achieved at the same time ((Godahewa et al., 2025), (Van Belle, Crevits

& Verbeke, 2023)). Moreover, Zanotti (2025b) demonstrated that the retraining frequency does not

harm the forecast accuracy of global models, meaning that models estimated using this forecasting

approach retain the same level of performance even when updated less frequently. This has a strong

potential implication on the forecast stability: if we can reduce the retraining frequency of global

models, then we should obtain more stable predictions, because stability should be a non-increasing

function of the retraining frequency.

1.1. Research Question

We aim to address the question ”Are global forecasting models stable?”. Purposely, we study

whether the global modeling approach produces stable forecasts, and we try to understand the

effects of retraining on the forecast stability, that is whether avoiding re-estimation for every new

observation damages the stability of global models. To address this question, we rely on the two

most recent and comprehensive retail forecasting datasets: the M5 and VN1 competition data.

To generally understand the stability (or instability) of the forecasting models, we consider ten

distinct global forecasting methods (five from the traditional machine learning domain and five

based on commonly used deep neural network architectures). Moreover, we examine stability across

a range of retraining scenarios, from no retraining to continuous retraining, by exploring periodic

strategies that broadly encompass the most practical and effective approaches.

We also investigate the use of ensembling, or forecasting combinations, as a mean to obtain more

stable forecasts. This approach can indeed be significant to mitigate forecast instability, reducing

the model variance and bias.

1.2. Contributions

Our contribution is fourfold:

• We provide the first comprehensive study of the forecast stability of global models, using 10

distinct methods, a diverse collection of real-world datasets, and evaluating both point and

probabilistic predictions.
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• We analyze the relationship between retraining frequency and forecast stability, comparing

different scenarios to quantify the impact of frequent retraining in terms of the stability of

forecasting.

• We suggest a new metric to evaluate the instability of probabilistic forecasts.

• We present practical guidelines for organizations and practitioners on when and how often to

retrain global forecasting models to obtain stable forecasts.

By tackling these aspects, this paper contributes to both the forecasting and machine learning

communities by providing insights into the stability of global forecasting models.

1.3. Overview

The rest of this paper is organized as follows. After a brief review of related works (Section 2),

in Section 3 we describe the design of the experiment used in our study. The datasets and their

characteristics are presented in 3.1, and the methods adopted for global forecasting are discussed in

3.2. The concepts related to model update and retrain scenario are explained in 3.3, together with

the evaluation strategy adopted, while the metrics used to assess the stability of models are shown

in 3.4. In Section 4 we discuss the empirical findings of our study, including forecast stability and

ensembling on the different scenarios. Finally, Section 5 contains our summary and conclusions.

2. Related works

The cross-learning approach has seen substantial development in recent years. Today, most

time series forecasting studies include at least a benchmark comparison involving global models

(GMs), underscoring their growing importance in the field. Semenoglou, Spiliotis, Makridakis &

Assimakopoulos (2021) demonstrated the high accuracy of GMs on the M4 competition dataset,

while Hewamalage, Bergmeir & Bandara (2022) explored the conditions under which global models

are competitive. Additionally, Montero-Manso & Hyndman (2021) and (Montero-Manso, 2023)

provided theoretical support showing that GMs can match or surpass the accuracy of local models,

with lower complexity and without assuming data similarity. Global models have proven to be the

most accurate method in several forecasting domains, including retail demand (Spiliotis, Makridakis,

Semenoglou & Assimakopoulos (2022), Bandara, Shi, Bergmeir, Hewamalage, Tran & Seaman
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(2019), Juan R Trapero & Fildes (2015)), electricity demand (Buonanno, Caliano, Pontecorvo,

Sforza, Valenti & Graditi, 2022), water demand (Groß & Hans, 2024), gas consumption (Gawe l

& Paliński, 2024), and crop production (Ibañez & Monterola, 2023). Their effectiveness was

particularly evident during the M5 competition (Makridakis, Spiliotis & Assimakopoulos, 2022a),

where tree-based models employing cross-learning ranked among the top-performing solutions

(Januschowski, Wang, Torkkola, Erkkilä, Hasson & Gasthaus, 2022). To further enhance GM

performance, several strategies such as clustering (Godahewa, Bandara, Webb, Smyl & Bergmeir

(2021a), Bandara, Bergmeir & Smyl (2020)) and data augmentation (Bandara, Hewamalage, Liu,

Kang & Bergmeir, 2021) have been explored. Moreover, new machine learning (Godahewa, Webb,

Schmidt & Bergmeir, 2023) and deep learning (Oreshkin, Carpov, Chapados & Bengio, 2020)

architectures have been specifically designed to support cross-learning. Recently, research has begun

focusing on improving GMs’ ability to capture local patterns (Sen, Yu & Dhillon, 2019) and enhance

their interpretability (Rajapaksha, Bergmeir & Hyndman, 2023).

From a forecasting stability perspective, the literature is very poor. Godahewa et al. (2025)

introduced the first classification of the different types of forecasting stability, that is horizontal

or vertical stability, proposing a new model-agnostic framework based on linear combinations of

predictions to obtain more stable forecasts. Van Belle et al. (2023), instead, extended an existing

deep learning architecture (NBEATS) to optimize forecasts from both a traditional forecast accuracy

perspective as well as a forecast stability perspective, directly including an instability component

into the loss function of the model. There is also active research on forecast stability within

judgmental forecasting ground (Fildes & Goodwin, 2021). However, almost all the literature related

to forecast stability is focused on point prediction stability only, possibly because it is not clear how

to measure instability in terms of probabilistic forecasting, and maybe also because most machine

learning and deep learning methods do not directly output probabilistic predictions (Makridakis,

Spiliotis, Assimakopoulos, Chen, Gaba, Tsetlin & Winkler, 2022c). Nevertheless, in many forecasting

applications, such as supply chain management, it is crucial to generate and evaluate predictions

probabilistically, whether through prediction intervals, quantiles, or full predictive distributions

(Fildes, Ma & Kolassa, 2022). Among the methods developed for uncertainty quantification,

Vovk, Gammerman & Shafer (2005) introduced Conformal Inference, a model-agnostic framework

that offers valid uncertainty estimates and can also be applied in time series forecasting settings
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(Stankeviciute, M. Alaa & van der Schaar, 2021).

In the context of model retraining and updating strategies, the most comprehensive work in time

series forecasting is by Zanotti (2025b), who showed the positive effects of reducing the retraining

frequency of global models on both accuracy and forecasting costs. Spiliotis & Petropoulos (2024)

extensively investigated the impact of various retraining scenarios and parameter update methods

on model performance. However, their focus was limited to the exponential smoothing family,

following the traditional local modeling approach. (Huber & Stuckenschmidt, 2020) touched on

retraining within the retail demand domain, but the study was restricted to a small set of models,

limited retraining strategies, and a proprietary daily dataset. While these findings are encouraging,

there has been little direct investigation into whether global models specifically can retain stability

with less frequent updates.

Building on these prior studies, our work directly examines the stability of global models.

Moreover, by systematically evaluating a wide range of retraining strategies and their effects on the

forecasting stability of various global models, we seek to offer both theoretical insights and practical

guidance for promoting more stable forecasting practices.

3. Experimental design

This section presents the empirical analysis carried out to investigate the stability of global

models and to determine whether less frequent retraining scenarios can yield stability outcomes

comparable to those of the baseline scenario, which involves the most frequent retraining. We

begin by describing the datasets used in our experiments, followed by an overview of the machine

learning, deep learning, and ensemble models employed. Finally, we detail the instability measures,

the various retraining scenarios considered, and the evaluation strategy applied to assess forecast

performance.

3.1. Datasets

For our experiments, we employed two retail forecasting datasets: the M5 and the VN1

competition datasets. The M5 competition, part of the well-known M-competitions series organized

by Spyros Makridakis and colleagues, aimed to benchmark forecasting methods in the context

of retail demand (Makridakis, Spiliotis & Assimakopoulos, 2022b). The M5 dataset (Howard &

Makridakis, 2020) includes 3,049 daily time series representing unit sales of Walmart products
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across three categories (Food, Hobbies, and Household) sold in ten stores located in California,

Texas, and Wisconsin. The data span from 2011 to 2016 and are characterized by high intermittency

and a hierarchical structure, enabling forecasts at multiple aggregation levels (e.g., SKU, product

category, store, and state). The dataset also includes exogenous variables such as prices, promotions,

and special events (e.g., holidays), which can influence demand. The VN1 Forecasting - Accuracy

Challenge, organized in October 2024 by Flieber, Syrup Tech, and SupChains, represents the first

edition of a new competition series (Vandeput, 2024). The dataset comprises weekly sales data for

15,053 products sold by U.S.-based e-vendors between 2020 and 2024. Unlike the M5, which involves

a single retailer (Walmart) and a limited number of physical stores, the VN1 dataset captures

sales from 328 warehouses operated by 46 different retailers. As far as we are aware, our study is

among the first to evaluate forecasting models on this dataset. Together, these two datasets offer

the most recent and comprehensive time series collections related to retail demand, enabling good

generalizability of our findings.

Table 1: The M5 and the VN1 datasets used in the experiments.

Dataset Frequency N. Series Min Obs per Series

M5 Daily (7) 28.298 730

VN1 Weekly (52) 15.053 157

In both cases, our analysis focused on the most disaggregated level of the data (i.e., SKUs),

where the potential advantages of reducing retraining frequency are likely to be most pronounced.

To ensure consistency with the evaluation setup described in Section 3.3, we applied a filtering

criterion: for the daily data (M5), only time series with at least two years of observations (730 data

points) were retained; for the weekly data (VN1), we considered only those series with at least

three years of data (157 observations).

3.2. Forecasting models

In this section, we present an overview of the global models used in our experiments.

Following Zanotti (2025b), let us define Y as the set of all available time series in a dataset,

where each Yi ∈ Y represents an individual time series. Let F denote the set of possible predictive

functions, with each F ∈ F corresponding to a specific forecasting model. Without loss of generality,
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we assume that all necessary information for prediction is contained within Y. Under the local

modeling paradigm, forecasts for a horizon h are generated by training a separate model for each

individual time series. This implies that each series Yi is associated with its own model, characterized

by its own set of parameter values.

Y h
i = F (Yi, θi). (1)

In contrast, under the global modeling framework, forecasts for each individual time series are

generated using a single model trained on the entire dataset. This approach leverages cross-series

information, allowing the model to learn shared patterns and structures across all time series in Y.

Y h
i = F (Y,Θ). (2)

It is important to note that in the cross-learning methodology, the model parameters Θ are not

specific to individual time series but are shared across all series in the dataset. This parameter

sharing is a key characteristic of global models, enabling them to generalize patterns across series

and potentially reducing the forecast instability.

In our study, we focused exclusively on analyzing the stability of global methods, as our

primary goal was to assess whether this modeling approach, unlike the traditional local one, can

maintain performance with less frequent retraining. Cross-learning has become the standard in

many industries dealing with large-scale time series data, particularly in retail demand forecasting,

where regular forecasts for thousands of SKUs are required (Januschowski, Gasthaus, Wang, Salinas,

Flunkert, Bohlke-Schneider & Callot, 2020). Therefore, to conduct a comprehensive evaluation

of the stability of global models, we incorporated both traditional machine learning algorithms

and state-of-the-art deep learning architectures. The selected models are well-established in the

time series forecasting literature and represent a range of methodological paradigms, allowing for a

broad and informative comparison.

As in Zanotti (2025b), we used five machine learning models and five deep learning models.

Machine learning models have proven effective in forecasting tasks due to their ability to capture

complex non-linear relationships in data. They are also relatively easy to train and tend to deliver

strong performance when leveraging cross-learning techniques. In this study, we experimented with

Linear (Pooled) Regression and four widely used tree-based methods. While machine learning
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models are easier to train compared to deep learning alternatives, they often rely heavily on high-

quality feature engineering (Januschowski et al., 2022). For our experiments, we adopted simplified

versions of the feature engineering pipelines used in the top-performing M5 and VN1 solutions.

We constructed time series features such as lags, rolling means, expanding means, and calendar

features (e.g., year, month, week, day of the week). We also included static metadata such as store,

product, category, and location identifiers based on the dataset’s frequency. For the M5 dataset,

additional external features like special events were also incorporated. Model hyperparameters

were selected based on configurations used in top-performing competition solutions when available;

otherwise, we relied on the recommended defaults from the respective libraries. We compared five

machine learning models for time series forecasting. Linear Regression (LR) is a classical statistical

model effective with appropriate feature engineering, often used as a benchmark in global model

performance ((Montero-Manso & Hyndman, 2021), (Godahewa, Bergmeir, Webb, Hyndman &

Montero-Manso, 2021b)). Random Forest (RF), an ensemble learning method, captures non-linear

patterns and is robust to overfitting, making it suitable for demand forecasting ((Breiman, 2001),

(Januschowski et al., 2022)). Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting

Machine (LGBM) are gradient-boosted models known for speed and accuracy, with LGBM excelling

in large, high-dimensional datasets ((Chen & Guestrin, 2016), (Ke, Meng, Finley, Wang, Chen,

Ma, Ye & Liu, 2017), Makridakis et al. (2022a)). Categorical Boosting (CatBoost) specializes in

handling categorical data with minimal preprocessing (Prokhorenkova, Gusev, Vorobev, Dorogush

& Gulin, 2018).

Deep learning models have gained significant traction in time series forecasting due to their

ability to model long-range temporal dependencies and to learn hierarchical representations directly

from raw input data (Goodfellow, Bengio & Courville, 2016). Unlike machine learning models, deep

learning architectures typically do not require extensive manual feature engineering. They can au-

tonomously learn lagged structures, trend, and seasonality directly from the raw series. Nevertheless,

training deep models is often more complex due to the higher number of hyperparameters and their

sensitivity to configuration choices, which can significantly affect performance (Smyl, 2020). In our

implementation, we followed competition-proven practices by providing only static, calendar, and

external covariates as inputs, while using top solutions’ guidelines for setting the model hyperparam-

eters. We compared five deep learning models for time series forecasting. Multi-Layer Perceptron
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(MLP) is a versatile, efficient neural network used in many time series forecasting tasks (Rosenblatt,

1958), while Recurrent Neural Networks (RNNs), particularly LSTMs and GRUs, capture temporal

dependencies in sequential data ((Cho, van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk

& Bengio, 2014), (Hochreiter & Schmidhuber, 1997)). Temporal Convolutional Networks (TCN)

offer an alternative by using causal convolutions to capture long-range dependencies (Van den Oord,

Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior & Kavukcuoglu, 2016). Neural

Basis Expansion Analysis for Time Series (NBEATS) and Neural Hierarchical Interpolation for

Time Series (NHITS) are state-of-the-art models for time series forecasting, with NBEATS offering

interpretable trend and seasonality components (Oreshkin et al., 2020), and NHITS improving

upon NBEATS with hierarchical interpolation mechanisms (Challu, Olivares, Oreshkin, Garza,

Mergenthaler-Canseco & Dubrawski, 2022).

Moreover, we also estimated four different ensemble learning models based on Zanotti (2025a).

Ensemble learning combines the predictions of multiple base models to improve forecast accuracy

and robustness, particularly when individual models capture complementary patterns in the data.

In the context of global forecasting, ensembles are especially valuable for mitigating the risk of model

instability and overfitting, which can occur when relying on a single method (Wang et al., 2023). In

our study, we adopted a simple averaging strategy, which is widely used for its ease of implementation

and effectiveness in improving forecast robustness (Claeskens, Magnus, Vasnev & Wang, 2016).

Specifically, we constructed ensembles by averaging the forecasts of the top two, top three, top four,

and top five most accurate individual models, as determined on out-of-sample performance. The

ensemble configurations were designed to reflect practical setups and were validated using the same

rolling origin evaluation framework described in Section 3.3. By incorporating ensemble learning

into our analysis, we aimed to assess whether combining global models could further enhance

forecasting stability under different retraining scenarios. Moreover, by evaluating multiple ensemble

sizes, we aimed to understand how the inclusion of additional models affects the stability under

different circumstances.

All global models were implemented in Python using Nixtla’s framework (Nixtla, 2022). Specifi-

cally, the mlforecast library was used to train the machine learning models, while neuralforecast

was employed for efficiently training the deep learning models.
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3.3. Evaluation strategy

Out-of-sample evaluation is a cornerstone of time series forecasting, providing a way to test a

model’s generalization ability beyond the training period, an essential step given that future data

may diverge from historical patterns due to structural breaks, level shifts, or unexpected shocks

(Tashman, 2000). Among the various evaluation strategies, the rolling origin evaluation has emerged

as the most widely accepted and rigorous method (Bergmeir & Beńıtez, 2012). It respects the

chronological nature of time series data while enabling repeated assessments across multiple forecast

origins. In this framework, the time series is split into a training set and a test set, where the model

is trained on the former and evaluated on the latter. Forecasts are generated for a defined horizon

h, and at each iteration, the forecast origin is shifted forward by a specified step size, typically one,

to simulate real-time forecasting. The model is then retrained on the updated training data, using

either a fixed-length or expanding window. Stability metrics (see Section 3.4) are averaged over all

iterations to provide a robust estimate of forecasting accuracy.

Compared to fixed origin evaluations, rolling origin offers a more nuanced view of a model’s

robustness by exposing it to a range of temporal conditions (including seasonal patterns, trends, and

potential anomalies) that may not be captured in a single evaluation window (Bergmeir & Beńıtez,

2012). This iterative approach reduces the risk of overfitting to one specific train-test split, and

is especially beneficial in operational contexts like retail, logistics, or finance, where forecasts are

regularly updated in response to incoming data. It also aligns well with real-world decision-making

processes that require forecasts to adapt over time.

In practice, the design of a rolling origin evaluation depends on several parameters: the size of

the test set, the length of the forecast horizon, the step size, and the windowing strategy (fixed

vs expanding). The expanding window strategy is particularly suited for short time series, as it

maximizes the amount of historical data available at each iteration. This approach is widely used in

applied settings (Petropoulos & et al., 2022), and it is the one we adopted in our study, especially

given the relatively short length of the weekly VN1 series. Following Zanotti (2025b), Table 2

outlines the key parameters used in our experiments, including a test set spanning at least one full

year to mitigate seasonal bias, horizons aligned with typical business use cases, and a step size of

one to maximize evaluation frequency.

Furthermore, to investigate the impact of retraining frequency on forecasting stability, we
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Table 2: The retraining scenarios, the test window, and the horizon for the M5 and the VN1 datasets.

Dataset Frequency Retraining Scenarios (r) Test Window (T) Horizon (h)

M5 Daily (7) 7, 14, 21, 30, 60, 90, 120, 150, 180, 364 364 28

VN1 Weekly (52) 1, 2, 3, 4, 6, 8, 10, 13, 26, 52 52 13

examined various retraining scenarios, or retraining windows, as defined in Zanotti (2025b). Each

window r indicates the number of new observations after which the model is retrained. These

retraining scenarios are tailored to the data frequency, daily for M5 and weekly for VN1, since

frequency dictates both the forecast horizon and business review cycles. Table 2 summarizes the

selected retraining windows, test periods, and forecast horizons. For instance, in the daily case, r = 7

reflects weekly updates. Across all scenarios, we trained global models on aligned datasets, updating

the model either completely at each retraining step or not at all. We excluded hyperparameter

tuning due to its high cost and marginal expected benefit. Following Zanotti (2025b), we treated

r = 1 (or r = 7 for daily data) as the accuracy benchmark and r = T as the no-retraining baseline,

with intermediate values representing periodic retraining strategies.

3.4. Evaluation metrics

3.4.1. Stability metrics

The stability evaluation of point predictive models is a crucial topic in time series forecasting:

very few metrics are available to capture models’ vertical stability, and there is no consensus in

the literature on what metric to use (Godahewa et al., 2025). Van Belle et al. (2023) proposed

the symmetric Mean Absolute Percentage Change (sMAPC), which measures the change of one to

h-step ahead forecasts obtained by two consecutive forecast origins, providing a measurement of up

to which extent the forecasts generated at the first origin are unstable compared to those generated

at the second origin.

sMAPC =
200

h− 1

n+h−1∑
t=n+1

|ŷt,n − ŷt,n−1|
|ŷt,n| − |ŷt,n−1|

. (3)

Here, ŷt,n and ŷt,n−1 are the forecasts generated for period t with origins n and n−1 respectively.

The instability across different pairs of consecutive forecasting origins can be obtained by a simple

average of the sMAPC values. Lower values imply less unstable predictions.
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Beyond point forecasts, our study also emphasizes the probabilistic stability of the models

under different retraining strategies. Since most machine learning and deep learning models do

not natively produce full predictive distributions, we employed Conformal Inference to construct

prediction intervals around point forecasts. Conformal Inference is a flexible and robust framework

that provides distribution-free, model-agnostic prediction intervals with guaranteed finite-sample

coverage under mild assumptions (Vovk et al., 2005). Although initially developed for i.i.d. data,

recent extensions have adapted it for time series applications by relaxing the exchangeability

assumption (Stankeviciute et al., 2021). Its advantages (validity guarantees, minimal assumptions,

computational simplicity, and effectiveness with limited data) make it especially suitable for our

global forecasting setup, where different models are compared across heterogeneous datasets and

varying levels of retraining frequency. Because no metric exists to evaluate the vertical stability (or

instability) of the resulting probabilistic forecasts, we proposed a new measure, the Multi-Quantile

Change (MQC, or Multi-Quantile Loss Change, MQLC), to comprehensively assess the stability of

the probabilistic predictions. We defined the Quantile Change and the Multi-Quantile Change as:

QC =
1

h− 1

n+h−1∑
t=n+1

(
q · (ŷt,n−1 − ŷt,n) · Iŷt,n−1≥ŷt,n + (1 − q) · (ŷt,n − ŷt,n−1) · Iŷt,n−1<ŷt,n

)
, (4)

MQC =
1

Q
∑
q∈Q

QC(q). (5)

The Quantile Change (QC) metric is a measure of the change in forecasted quantiles between

two consecutive forecast origins. Given two forecast origins, n and n − 1, QC quantifies the

average adjustment in the predicted quantiles across the forecast horizon h. The formula mirrors

the Quantile Loss (Pinball Loss) but replaces the actual observations yt, with previous forecasts

ŷt,n−1, thereby shifting the focus from forecast accuracy to forecast stability. The intuition is

straightforward: if the forecasts are stable across time (i.e., ŷt,n ≈ ŷt,n−1), then QC will be small.

Large QC values indicate that the model updates its distribution significantly with each new

observation, suggesting a lack of temporal robustness in its probabilistic output. By aggregating

this across a range of quantiles Q, the Multi-Quantile Change (MQC) captures overall instability

across the entire forecast distribution, providing a comprehensive metric for probabilistic stability.

One drawback of the MQC is that it is based solely on a finite set of quantiles rather than the full

predictive distribution. As a result, it captures changes only at selected points in the distribution

(e.g., median, tails), potentially missing more subtle shifts in shape, skewness, or variance that occur
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between those quantiles. However, in practical forecasting applications, especially in retail and

supply chain domains where decisions are often made based on specific quantile levels (e.g., high

quantiles for safety stock), this limitation is mitigated by the fact that the selected quantiles are

usually those of greatest operational interest. Moreover, through Conformal Inference, it is possible

to calculate as many quantiles as desired at no computational cost, making MQC a pragmatic and

model-agnostic metric for capturing distributional instability across time.

We computed 13 quantiles: the median and 6 central prediction intervals (60%, 70%, 80%, 90%,

95% and 99%). Central intervals describe the forecast center, while wider intervals capture tail

risks, essential for safety stock decisions in retail (Barrow & Kourentzes, 2016). To ensure reliable

quantile estimates, conformal prediction intervals were computed on a validation set at least twice

the forecast horizon, which constrained the number of time series used.

We normalized each evaluation metric relative to the baseline retraining scenario, defined by

the dataset frequency, to enable consistent comparison across models and retraining windows. To

statistically validate our findings, we applied the Friedman-Nemenyi test for multiple comparisons

(Demšar, 2006).

3.4.2. Performance metrics

Evaluating point forecast accuracy in time series is a debated topic, with no consensus on the

best metric (Hewamalage, Ackermann & Bergmeir, 2023). In our context of SKU-level demand

forecasting, characterized by intermittent data, metrics based on absolute or percentage errors are

suboptimal (Kolassa, 2020), and due to varying scales across series, a scaled accuracy metric has

to be preferred. Hence, we adopted the Root Mean Squared Scaled Error (RMSSE) (Hyndman &

Koehler, 2006),

RMSSE =

√√√√ 1
h

∑n+h
t=n+1(yt − ŷt)2

1
n−s

∑n
t=s+1(yt − yt−s)2

. (6)

which compares the model’s squared error to that of a seasonal naive forecast, and it was the

official accuracy metric in the M5 competition (Makridakis et al., 2022b). Lower values indicate

better performance.

To assess probabilistic accuracy, we evaluated the quantiles produced through the Conformal

Inference framework using the Quantile Loss (QL) and Multi-Quantile Loss (MQL).
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QL =
1

h

n+h∑
t=n+1

(q · (yt − ŷt) · Iyt≥ŷt + (1 − q) · (ŷt − yt) · Iyt<ŷt) , (7)

MQL =
1

Q
∑
q∈Q

QL(q). (8)

These proper scoring rules assess forecast distribution accuracy (Kolassa, 2016). Moreover, the

MQL was the official metric of the M5 Uncertainty competition (Makridakis et al., 2022c).

For this study, we adopted a cloud computing machine NC6s v3 hosted on Microsoft Azure,

with Linux Ubuntu 24 operating system, 1 Graphical Processing Unit, 6 Computing Processing

Units, 112GB of memory.

4. Results and discussion

This section discusses the empirical findings of our study, highlighting the interplay between

accuracy, probabilistic performance, and stability cost across different retraining strategies and

ensemble configurations. We extract insights from both the M5 and VN1 datasets to uncover

consistent patterns as well as nuances unique to each dataset’s characteristics.

Table 3 summarizes the performance and stability of all forecasting methods evaluated in

this study, across both the M5 and VN1 datasets. For each method, the table reports four key

metrics per dataset: RMSSE (Root Mean Squared Scaled Error) to evaluate point forecast accuracy,

MQL (Multi-Quantile Loss) to assess probabilistic forecast performance, sMAPC (symmetric Mean

Absolute Percentage Change) to compare the stability in point forecast settings, and MQC (Multi-

Quantile Change) to understand the stability in probabilistic terms. Overall 1, the models evaluated

achieved better stability results on the M5 dataset than on VN1. Several factors may account

for this difference, such as the larger dataset size and higher frequency of the M5 time series,

the availability of rich external regressors (e.g., promotions, special events), and the existence of

well-established benchmark hyperparameter settings, many of which were unavailable for VN1 at

the time of model training. Moreover, in terms of point forecasting, machine learning models are

much more stable than deep learning methods on both datasets, implying that the former are less

sensitive to frequent updates. On the contrary, in terms of probabilistic forecasting, deep learning

1The overall results are based on the baseline retraining scenario, r = 7 for M5 and r = 1 for VN1, which is

commonly considered the standard in both theoretical literature and practical forecasting applications.
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Table 3: Overall forecasting performance and stability for each method across datasets. RMSSE, MQL, sMAPC, and

MQC. Minimum values per column are highlighted in bold.

Method
M5 VN1

RMSSE MQL sMAPC MQC RMSSE MQL sMAPC MQC

LR 0.777 0.267 0.188 0.118 6.549 2.896 0.085 1.064

RF – – – – 1.868 2.590 0.092 1.322

XGBoost 0.755 0.258 0.075 0.115 1.890 2.469 0.146 1.101

LGBM 0.771 0.256 0.054 0.123 3.542 2.625 0.121 1.282

CatBoost 0.947 0.263 0.118 0.127 5.762 2.845 0.320 1.435

MLP 0.821 0.281 0.500 0.109 1.543 2.492 0.458 0.844

LSTM – – – – 1.913 2.843 0.558 1.020

TCN 0.865 0.290 0.499 0.114 1.913 2.843 0.600 1.020

NBEATSx 0.815 0.279 0.547 0.110 1.698 2.626 0.596 1.532

NHITS 0.828 0.284 0.566 0.112 1.699 2.632 0.605 1.592

Ens2A 0.757 0.255 0.059 0.117 1.472 2.369 0.503 1.079

Ens3A 0.757 0.256 0.089 0.117 1.517 2.410 0.514 1.200

Ens4A 0.758 0.249 0.095 0.113 1.524 2.386 0.167 1.180

Ens5A 0.763 0.251 0.099 0.111 1.544 2.375 0.164 1.153
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architectures show less instability, meaning that these approaches can be a better option when

retraining is performed frequently.

In general, ensembling seems to be a good solution to produce stable predictions. However,

combining the most accurate models is often not sufficient to reduce the instability. Indeed,

ensembles show increasing returns in stability as more models are added, as opposed to the well-

known phenomenon in the ensemble literature, where accuracy improvements show diminishing

returns from adding more models (Zanotti, 2025a). Interestingly, larger ensembles are usually more

effective for stability purposes, implying that model diversity may be a more relevant criterion to

create a forecast combinations, in contrast to model performance. This pattern is particularly true

for probabilistic forecasting, but it is also evident in point predictions. For instance, in the VN1

dataset, the Ens4A and Ens5A combinations achieve good stability results simply because they

contain both deep learning and machine learning models, extending the combination’s diversity.

Indeed, even if the deep learning models’ instability is on average 60%, it is enough to add one

single machine learning model to obtain an improvement of almost 45%.

Figure 1 shows the point forecast stability of each model along the different retraining scenarios

for the M5 and the VN1 datasets. To allow comparisons, we display the results in relative terms

with respect to the baseline scenarios, that is r = 7 for M5 and r = 1 for VN1. As expected, the

sMAPC profiles are non-increasing functions of the retraining frequencies. The stability remains

practically the same across update frequencies or even improves as the retraining period increases.

Indeed, moving from high to low retraining frequencies, the stability of most global models improves

compared to the baseline. In particular, for some models (i.e. CatBoost, LSTM, and TCN) the

instability reduction is strong and consistent, reaching very low levels. These results imply that less

frequent retraining may have a huge impact on the point forecast stability of global models. This

can be explained by the fact that, when a forecasting origin is updated and the model is retrained

on the new data, the model’s predictions may differ consistently (even using the cross-learning

approach) from those produced before the update. Therefore, less retraining is often synonymous

with more stability.

Figures 2, and 3 statistically confirms the above results for the M5 and VN1 datasets. It is

clear that most periodic retraining scenarios are statistically different to the continuous retraining

strategy in terms of point forecast stability at the 5% level.
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Figure 1: sMAPC results for each method and retrain scenario combination in relative terms with respect to the

baseline scenario, r = 7 for the M5 dataset and r = 1 for the VN1 dataset.

Figure 2: M5 Friedman-Nemenyi test results based on sMAPC.
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Figure 3: VN1 Friedman-Nemenyi test results based on sMAPC.

In a similar fashion, Figure 4 summarizes the relative stability in a probabilistic forecasting

setting. In this context, we observe that, for the M5 dataset, the stability (as measured by Multi

Quantile Change) paths are constant across almost every retraining scenario, meaning that less

frequent updates neither harm nor improve the probabilistic forecasting stability of most global

models. For the VN1 dataset, instead, we observe an almost convex relationship between the stability

and the retraining frequency. On average, models’ stability improves for low retraining scenarios

and then starts deteriorating around r = 10, implying that it is possible to avoid retraining up to

10 weeks without negatively impacting on the forecast stability. For both datasets, these results are

confirmed by the statistical tests on MQC over the different retrain periods (see supplementary

materials).

Overall, the results from Figures 1 and 4, supported by the Friedman-Nemenyi tests, indicate

that reducing the retraining frequency of global models does not negatively impact (and may even

enhance) forecast stability, for both point and probabilistic forecasts. When considered alongside

the findings of Zanotti (2025b), this provides strong evidence against the practice of continuous

retraining in global forecasting models. Lower retraining frequencies preserve both accuracy and
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Figure 4: MQC results for each method and retrain scenario combination in relative terms with respect to the baseline

scenario, r = 7 for the M5 dataset and r = 1 for the VN1 dataset.

stability, while offering substantial savings in computational resources.

Figure 5 shows the evolution of point forecast stability, across different retraining scenarios for

various ensemble configurations. The results on the M5 dataset indicate that reducing retraining

frequency may negatively affect forecast stability. However, this impact is below 1% for most

retraining scenarios. Indeed, statistical tests (in supplementary material) on the significance of

these differences show that most retraining scenarios are not statistically different from each other,

with periodic retraining strategies being at least as good as continuous retraining. The results on

the VN1, instead, indicate that there exists a clear benefit in lowering the retraining frequency in

terms of forecast stability. Notably, on the M5 dataset the smallest ensemble (Ens2A) consistently

achieves the lowest sMAPC values, since it is obtained by combining XGBoost and LGBM that

where both the most accurate and the most stable global forecasting models on that set of data.

Nonetheless, larger ensembles (such as Ens4A and Ens5A) stability profiles tend to outperform

smaller ones, especially at lower retraining frequencies, suggesting that model diversity plays a

critical role in stabilizing ensemble forecasts when. Figure 6 further supports these observations in

the probabilistic domain. First of all, probabilistic forecasts of ensembles are generally more stable

than that of the base models across retraining frequencies, especially in M5, where MQC variations

are within 1 percentage point. Moreover, in the VN1 dataset, the almost convex relationship between
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Figure 5: sMAPC results for each ensemble and retrain scenario combination in relative terms with respect to the

baseline scenario, r = 7 for the M5 dataset and r = 1 for the VN1 dataset.

stability and the retraining frequency is flattened, because the variations are more restrained as the

retraining period increases, and the decline in stability happens only from r = 26 onwards. Then,

larger ensembles provide consistently more stable probabilistic performance across most retraining

scenarios, confirming the role of the diversity composition of ensembles even in the probabilistic

setting. Most importantly, the effect of ensembling on the profiles of stability, as measured by

sMAPC or MQC, is that it greatly reduces the variations across the different retraining frequencies,

reducing both positive and negative stability changes.

Figures 7 and 8 illustrate the fundamental trade-off between forecast accuracy and stability,

comparing RMSSE with sMAPC and MQL with MQC, respectively. These plots reveal that high

accuracy does not guarantee high stability. In particular, several deep learning models, achieve low

RMSSE or MQL scores but exhibit high instability, especially in VN1, highlighting their sensitivity

to changes in the training data and their volatility across forecast origins. Conversely, models like

Random Forest, XGBoost, and LGBM strike a more favorable balance, maintaining relatively low

RMSSE and sMAPC values. Nevertheless, it is the ensemble models, and especially those with

larger size like Ens4A and Ens5A, that most consistently approach the optimality of stability and

accuracy. In both the point and probabilistic domains, even very simple ensembles manage to

control variance and mitigate instability without sacrificing much, if any, predictive performance.
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Figure 6: MQC results for each ensemble and retrain scenario combination in relative terms with respect to the

baseline scenario, r = 7 for the M5 dataset and r = 1 for the VN1 dataset.

The overall picture that emerges from these figures reinforces the idea ensembling offers a practical

and effective strategy to counteract forecast instability, particularly when constructed from a diverse

pool of models.

This set of results has clear practical implications: in operational forecasting systems, especially

in domains such as retail and supply chain management, the use of ensembles combined with lower

retraining frequencies may offer a robust forecasting process, balancing performance with reliability.

5. Conclusions

This study provides a comprehensive empirical assessment of forecast stability in global models,

focusing on the effects of retraining frequency and ensembling across both point and probabilistic

forecasting contexts. Our findings demonstrate that global forecasting models are able to produce

very stable predictions and that they can achieve even more stability under reduced retraining

frequencies, challenging the prevailing wisdom that frequent model updates are necessary to maintain

forecast reliability.

In terms of point forecasting, the results consistently show that retraining less frequently does

not harm, and often improves, forecast stability. This trend is particularly evident in the M5 dataset,

where many models exhibit monotonic or flat stability profiles as the retraining interval increases.
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Figure 7: The accuracy-stability trade-off. RMSSE vs sMAPC for the M5 and VN1 datasets.

Figure 8: The accuracy-stability trade-off. MQL vs MQC for the M5 and VN1 datasets.
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Similar patterns, although more nuanced, are observed in the VN1 dataset. Probabilistic forecast

stability, as measured by the newly defined Multi-Quantile Change (MQC), shows a slightly different

behavior. While in the M5 dataset forecast stability remains largely unaffected by retraining

frequency, in VN1 we observe a convex relationship, indicating that retraining up to every 10

weeks can preserve stability, but beyond that point the quality of probabilistic forecasts begins to

deteriorate. These results are statistically validated via Friedman-Nemenyi tests and indicate that

continuous retraining is often not the optimal strategy.

Ensembling emerges as a powerful strategy to enhance forecast stability. While combining only

the most accurate models offers moderate gains, the most substantial improvements in stability,

both point and probabilistic, are achieved by ensembles that incorporate a diverse mix of forecasting

algorithms. This effect is especially pronounced in the VN1 dataset, where larger and more

heterogeneous ensembles significantly reduce forecast volatility across retraining scenarios. Notably,

ensemble models not only improve stability metrics but also smooth the variation in stability across

retraining frequencies, further reinforcing their role as a stabilizing force in global forecasting systems.

These results suggest that model diversity should be prioritized over raw model performance when

building ensembles.

The joint analysis of retraining and ensembling reveals that the two approaches act as com-

plementary levers for stabilizing forecasts. Less frequent retraining reduces abrupt changes in

model behavior across forecasting origins, while ensembling mitigates the instability arising from

any single model’s sensitivity to input changes. When combined, these strategies offer a robust

forecasting setup that minimizes the instability of both point estimates and prediction intervals

without sacrificing predictive accuracy. Figures comparing the accuracy–stability trade-off clearly

show that ensembles lie closer to the optimality, offering an optimal balance between these competing

objectives.

From a practical standpoint, these findings have several implications. First, businesses that

rely on large-scale forecasting systems, such as those in retail, inventory management, and supply

chain planning, can adopt lower retraining frequencies not only to conserve computational resources

but also to increase operational stability, without compromising on forecast quality. Second,

incorporating diverse ensembles into global forecasting frameworks provides an effective hedge

against model instability, thereby increasing the reliability of forecasts used in decision-making
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processes. Finally, these results support a shift in emphasis from pure accuracy to stability-aware

model selection and evaluation, in those contexts that are more sensitive to forecast reviews.

Nevertheless, some limitations of the present study should be acknowledged. While the analysis

covers a broad range of global models and two state-of-the-art retail forecasting datasets, the

generalizability of the findings to other domains or data types (e.g., macroeconomic indicators,

financial series, or healthcare time series) remains an open question. Additionally, the study focuses

solely on full retraining schemes and does not explore incremental or online learning strategies,

which may offer a different trade-off between accuracy and stability. Future research could extend

this work by incorporating such adaptive methods, assessing alternative ensembling techniques

(e.g., weighted or stacking ensembles), and introducing business-oriented stability metrics that link

forecast instability directly to operational cost or risk. Further theoretical development of stability

measures, particularly for probabilistic forecasts, may also contribute to a deeper understanding of

how models behave across time and under varying data regimes.

In conclusion, this work provides strong empirical evidence that frequent retraining is not

necessary for maintaining stability in global forecasting models, and that ensembling, particularly

when built on diverse model pools, is a highly effective strategy for achieving both stable and

accurate forecasts. These findings contribute to a growing body of research promoting sustainable

and robust forecasting practices in modern data-intensive environments.
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Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research,

7 , 1–30. URL: http://jmlr.org/papers/v7/demsar06a.html.

Fildes, R., & Goodwin, P. (2021). Stability in the inefficient use of forecasting systems: A case study in a supply

chain company. International Journal of Forecasting , 37 , 1031–1046. URL: https://www.sciencedirect.com/

science/article/pii/S0169207020301801. doi:https://doi.org/10.1016/j.ijforecast.2020.11.004.

Fildes, R., Ma, S., & Kolassa, S. (2022). Retail forecasting: Research and practice. International Journal of

Forecasting , 38 , 1283–1318. URL: https://www.sciencedirect.com/science/article/pii/S016920701930192X.

doi:https://doi.org/10.1016/j.ijforecast.2019.06.004. Special Issue: M5 competition.
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Supplementary material

In this section, we provide tables and figures related to the empirical results of the M5 and VN1

datasets. Table 4 shows the composition of ensembles across the different datasets.

Table 4: Composition of ensembles for the M5 and VN1 datasets.

Dataset Ensemble Models Included

M5

ENS2A XGBoost, LGBM

ENS3A XGBoost, LGBM, LR

ENS4A XGBoost, LGBM, LR, NBEATSx

ENS5A XGBoost, LGBM, LR, NBEATSx, MLP

VN1

ENS2A MLP, NBEATSx

ENS3A MLP, NBEATSx, NHITS

ENS4A MLP, NBEATSx, NHITS, RF

ENS5A MLP, NBEATSx, NHITS, RF, XGBoost

The Tables 5, 6, 8, and 7 show the forecast instability of the different models and ensembles

along the examined retrain scenarios for the M5 daily dataset.

The Tables 9, 10, 12, and 11 show the forecast instability of the different models and ensembles

along the examined retrain scenarios for the VN1 weekly dataset.

Figures 9, and 10 show the results of the Friedman-Nemenyi test in the context of probabilistic

instability for the M5 and VN1 datasets.

Figures 11, 12, 13, and 14 show the results of the Friedman-Nemenyi test in the context of both

point and probabilistic instability for the different ensemble models across retrain scenarios and for

each dataset.
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Method 7 14 21 30 60 90 120 150 180 364

LR 0.188 0.188 0.188 0.189 0.189 0.190 0.190 0.192 0.193 0.196

XGBoost 0.075 0.074 0.073 0.073 0.072 0.072 0.072 0.072 0.073 0.073

LGBM 0.054 0.053 0.053 0.053 0.052 0.052 0.052 0.052 0.052 0.052

CatBoost 0.118 0.043 0.059 0.037 0.029 0.020 0.018 0.018 0.018 0.019

MLP 0.500 0.511 0.506 0.520 0.513 0.524 0.510 0.525 0.475 0.553

TCN 0.499 0.209 0.174 0.086 0.055 0.043 0.031 0.017 0.017 0.003

NBEATSx 0.547 0.541 0.527 0.561 0.528 0.536 0.523 0.536 0.515 0.412

NHITS 0.566 0.548 0.558 0.534 0.565 0.537 0.533 0.520 0.512 0.564

Table 5: M5 sMAPC values for each method and retrain scenario combination.

Method 7 14 21 30 60 90 120 150 180 364

Ens2A 0.059 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058

Ens3A 0.089 0.089 0.089 0.089 0.089 0.089 0.090 0.090 0.091 0.092

Ens4A 0.095 0.094 0.094 0.097 0.095 0.095 0.095 0.095 0.096 0.097

Ens5A 0.099 0.098 0.098 0.101 0.099 0.099 0.099 0.099 0.100 0.101

Table 6: M5 sMAPC values for each ensemble and retrain scenario combination.

Method 7 14 21 30 60 90 120 150 180 364

LR 0.118 0.118 0.118 0.119 0.119 0.119 0.119 0.119 0.119 0.119

XGBoost 0.115 0.115 0.115 0.116 0.115 0.115 0.115 0.116 0.115 0.114

LGBM 0.123 0.122 0.123 0.124 0.123 0.123 0.123 0.124 0.123 0.122

CatBoost 0.127 0.144 0.123 0.144 0.144 0.144 0.144 0.142 0.141 0.139

MLP 0.109 0.109 0.110 0.110 0.111 0.111 0.112 0.111 0.110 0.110

TCN 0.114 0.114 0.114 0.113 0.113 0.112 0.113 0.112 0.110 0.108

NBEATSx 0.110 0.109 0.110 0.115 0.110 0.112 0.111 0.111 0.129 0.169

NHITS 0.112 0.111 0.122 0.112 0.114 0.114 0.115 0.135 0.114 0.115

Table 7: M5 MQC values for each method and retrain scenario combination.
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Method 7 14 21 30 60 90 120 150 180 364

Ens2A 0.117 0.117 0.117 0.118 0.118 0.118 0.118 0.119 0.118 0.117

Ens3A 0.117 0.117 0.116 0.118 0.118 0.118 0.117 0.118 0.117 0.117

Ens4A 0.113 0.113 0.113 0.114 0.114 0.113 0.113 0.114 0.113 0.113

Ens5A 0.111 0.111 0.111 0.112 0.111 0.111 0.111 0.111 0.110 0.110

Table 8: M5 MQC values for each ensemble and retrain scenario combination.

Method 1 2 3 4 6 8 10 13 26 52

LR 0.085 0.084 0.085 0.082 0.083 0.086 0.086 0.085 0.084 0.082

RF 0.092 0.090 0.089 0.089 0.088 0.088 0.089 0.089 0.089 0.090

XGBoost 0.146 0.129 0.126 0.120 0.118 0.115 0.114 0.119 0.117 0.113

LGBM 0.121 0.110 0.111 0.106 0.104 0.105 0.105 0.104 0.104 0.105

CatBoost 0.320 0.198 0.186 0.152 0.134 0.139 0.115 0.117 0.100 0.095

MLP 0.458 0.469 0.468 0.475 0.443 0.483 0.438 0.490 0.469 0.452

LSTM 0.558 0.301 0.203 0.126 0.101 0.044 0.055 0.048 0.032 0.013

TCN 0.600 0.260 0.226 0.177 0.120 0.091 0.052 0.056 0.020 0.013

NBEATSx 0.596 0.594 0.596 0.577 0.577 0.581 0.573 0.580 0.571 0.550

NHITS 0.605 0.589 0.583 0.572 0.533 0.541 0.552 0.528 0.573 0.580

Table 9: VN1 sMAPC values for each method and retrain scenario combination.

Method 7 14 21 30 60 90 120 150 180 364

Ens2A 0.503 0.515 0.505 0.495 0.499 0.504 0.487 0.485 0.495 0.509

Ens3A 0.514 0.526 0.526 0.509 0.509 0.514 0.510 0.512 0.511 0.512

Ens4A 0.167 0.170 0.162 0.153 0.145 0.137 0.148 0.134 0.135 0.145

Ens5A 0.164 0.162 0.154 0.145 0.138 0.131 0.138 0.129 0.129 0.135

Table 10: VN1 sMAPC values for each ensemble and retrain scenario combination.
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Method 1 2 3 4 6 8 10 13 26 52

LR 1.064 1.067 1.063 1.061 1.070 1.079 1.103 1.097 1.127 1.163

RF 1.322 1.329 1.328 1.341 1.353 1.366 1.403 1.392 1.439 1.504

XGBoost 1.101 1.072 1.080 1.079 1.083 1.097 1.084 1.135 1.175 1.254

LGBM 1.282 1.179 1.235 1.161 1.165 1.173 1.199 1.277 1.266 1.379

CatBoost 1.435 1.281 1.244 1.159 1.150 1.166 1.151 1.225 1.207 1.246

MLP 0.844 0.876 0.887 0.883 0.889 0.891 0.876 0.933 0.903 0.969

LSTM 1.020 1.015 1.008 1.004 1.005 0.993 0.986 0.987 0.972 0.930

TCN 1.020 1.015 1.008 1.004 1.005 0.993 0.986 0.987 0.972 0.930

NBEATSx 1.532 1.519 1.467 1.253 1.167 1.210 1.196 1.069 1.084 1.147

NHITS 1.592 1.505 1.412 1.254 1.212 0.998 1.174 1.028 1.082 1.145

Table 11: VN1 MQC values for each method and retrain scenario combination.

Method 7 14 21 30 60 90 120 150 180 364

Ens2A 1.079 1.114 1.062 0.974 0.949 0.982 0.962 0.921 0.944 1.022

Ens3A 1.200 1.192 1.148 1.024 0.990 0.973 0.995 1.005 0.970 1.034

Ens4A 1.180 1.166 1.122 1.036 1.021 1.001 1.028 0.988 1.017 1.080

Ens5A 1.153 1.137 1.107 1.033 1.022 1.000 1.031 1.006 1.029 1.091

Table 12: VN1 MQC values for each ensemble and retrain scenario combination.
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Figure 9: M5 Friedman-Nemenyi test results based on MQC.

Figure 10: VN1 Friedman-Nemenyi test results based on MQC.
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Figure 11: M5 Friedman-Nemenyi test results on ensembles based on sMAPC.

Figure 12: M5 Friedman-Nemenyi test results on ensembles based on MQC.
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Figure 13: VN1 Friedman-Nemenyi test results on ensembles based on sMAPC.

Figure 14: VN1 Friedman-Nemenyi test results on ensembles based on MQC.
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