
 

Department of Economics, Management and Statistics 
University of Milano – Bicocca 

Piazza Ateneo Nuovo 1 – 2016 Milan, Italy 
http://dems.unimib.it/ 

 
 

 

 

 

DEMS WORKING PAPER SERIES 
 

 

The cost of ensembling: is it always worth 

combining? 

 
Marco Zanotti 

 
No. 554 – June 2025 

 
 

 

 

 

http://dems.unimib.it/


The cost of ensembling: is it always worth combining?

Marco Zanottia,∗

aDepartment of Economics, Management and Statistics, University of Milano-Bicocca, Milan, Italy

Abstract

Given the continuous increase in dataset sizes and the complexity of forecasting models, the trade-

off between forecast accuracy and computational cost is emerging as an extremely relevant topic,

especially in the context of ensemble learning for time series forecasting. To asses it, we evaluated

ten base models and eight ensemble configurations across two large-scale retail datasets (M5 and

VN1), considering both point and probabilistic accuracy under varying retraining frequencies. We

showed that ensembles consistently improve forecasting performance, particularly in probabilistic

settings. However, these gains come at a substantial computational cost, especially for larger,

accuracy-driven ensembles. We found that reducing retraining frequency significantly lowers costs,

with minimal impact on accuracy, particularly for point forecasts. Moreover, efficiency-driven

ensembles offer a strong balance, achieving competitive accuracy with considerably lower costs

compared to accuracy-optimized combinations. Most importantly, small ensembles of two or

three models are often sufficient to achieve near-optimal results. These findings provide practical

guidelines for deploying scalable and cost-efficient forecasting systems, supporting the broader

goals of sustainable AI in forecasting. Overall, this work shows that careful ensemble design and

retraining strategy selection can yield accurate, robust, and cost-effective forecasts suitable for

real-world applications.
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1. Introduction

Ensemble learning has become a powerful and widely adopted approach in time series forecasting

due to its ability to improve predictive accuracy and robustness by aggregating the outputs of

multiple models. The fundamental idea behind ensemble methods is that combining forecasts

from diverse models can help balance their individual strengths and weaknesses, thereby reducing

the risk of overfitting and mitigating model-specific biases or errors. This approach leverages the

principle that while individual models might make different types of errors, their combination can

average out these errors. One of the most intriguing and empirically validated findings in the

literature is that simple ensemble strategies, such as taking the mean or median of forecasts, often

outperform more sophisticated combination methods like stacking (also known as meta-learning)

or weighted ensembles. This phenomenon, known as the forecast combination puzzle (Claeskens

et al., 2016), suggests that in many cases the added complexity of estimating optimal weights or

training a meta-learner does not yield meaningful gains in accuracy and can even lead to overfitting,

especially when the number of forecast points is limited. Indeed, the success of simple combinations

is partly due to their ability to remain robust in the presence of model misspecification, parameter

uncertainty, and changing data dynamics, issues that more complex ensemble methods may struggle

to accommodate effectively.

In general, the benefits of ensemble learning are numerous: it improves forecast accuracy,

enhances model stability across time and datasets, and increases resilience to structural breaks or

shifts in the data. Ensembles also provide a practical hedge against model uncertainty, allowing

practitioners to rely less on the assumption that any single model is correctly specified. In the

context of global forecasting models, ensemble methods become especially valuable. Global models

are trained across many time series simultaneously, and while they excel at identifying cross-series

patterns, they can also suffer from model instability or biases if the chosen architecture fails to

generalize across heterogeneous series. Combining multiple global models, each with different

biases, architectures, or feature representations, can help counteract these issues by smoothing

out individual model errors and reducing the risk of overfitting to shared but spurious signals

across series (Wang et al., 2023). Additionally, ensembles serve as a hedge against model selection

uncertainty, which is particularly relevant in global settings where the optimal model may vary

substantially across groups of series. By pooling predictions, ensembles offer a form of model
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diversification that improves generalization, making them a powerful and practical tool in modern

forecasting systems.

However, ensemble methods are not without drawbacks. One significant limitation is the

increased computational cost, especially when combining large numbers of complex models like

deep learning architectures or global forecasting models. This cost is magnified when retraining

or model tuning is required for each component model at multiple forecast origins. Additionally,

from a business perspective, managing and maintaining multiple models adds complexity to the

production of forecasts. Moreover, in cases where the component models are very similar or highly

correlated, the marginal benefit of ensembling diminishes, potentially offering little improvement

over the best individual model (Kolassa, 2011).

Therefore, one of the major advantages of adopting a global modeling approach can be offset

when ensemble learning is introduced. Combining several models, even with simple techniques

like averaging, inherently increases the computational time, as multiple models must be trained,

validated, and maintained, producing substantial computational overhead. In this sense, ensemble

learning may weaken one of the core benefits of the global modeling paradigm: reduced training time

and resource usage. Moreover, since forecasts are typically generated using cloud computing services

with pay-as-you-go pricing models (Fotios Petropoulos & Spiliotis, 2024), increased computational

time and resource consumption directly leads to higher forecasting costs for organizations. These

costs may also rise exponentially when frequent retraining strategies are adopted. Indeed, it is a

widespread practice to update forecasting models whenever new data becomes available, often driven

by the belief that frequent updates enhance the model’s ability to adapt to evolving patterns and

improve predictive accuracy. However, when ensembles are used, all the models within the ensembles

must be retrained to obtain the final predictions, abruptly increasing the costs of forecasting.

This trade-off between performance and computational time in the context of ensemble learning

raises important questions about the balance between accuracy gains and cost efficiency, especially

in large-scale forecasting applications. However, despite these challenges, ensemble learning remains

one of the most widely used strategies in the forecasting industry, which further amplifies concerns

about the long-term sustainability and scalability of forecasting systems. Indeed, from a practical

perspective, forecast combinations, coupled with frequent retraining, has also significant environ-

mental costs, since the energy consumption of model training extends beyond direct computational
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costs, contributing to energy consumption and carbon emissions (Schwartz et al., 2020). There-

fore, understanding the cost of ensemble forecasting models and the effects of retraining on their

performance is of paramount importance for advancing more sustainable forecasting practices.

1.1. Research Question

We aim to address the question ”Are ensembles always the solution?”. Specifically, we focus on

the trade-off between accuracy and sustainability, in terms of the cost of producing the forecasts,

among different types of ensembles of global forecasting models. This cost is particularly relevant

for ensemble models since it becomes exponentially larger with the number of base models used to

produce the combined forecasts. To this end, we use ten global models as base learners, ranging

from traditional machine learning methods to advanced deep learning architectures. In addition, we

evaluate eight ensemble approaches, all trained and tested on the two most recent and comprehensive

retail forecasting datasets: the M5 and VN1 competition datasets.

We also investigated the effects of retraining on the forecasting performance of ensembles,

compared to that of the base models. In particular, we assess whether reducing the frequency of

retraining, by avoiding re-estimation of base models as new data becomes available, can effectively

enhance the cost-accuracy trade-off in ensemble forecasting. Hence, we explored a wide range of

retraining strategies, from continuous retraining to a no-retraining approach, including various

intermediate periodic retraining schemes to encompass the most practical and effective scenarios.

1.2. Contributions

Our contribution is fourfold:

• We provide the first comprehensive study of the cost-accuracy trade-off of ensembles of

global models, using 10 distinct methods, some of the most relevant real-world datasets, and

evaluating both point and probabilistic predictions.

• We analyze different ensemble strategies to asses the effects of the ensemble size on forecast

accuracy and costs.

• We compare various retraining solutions, such as continuous, periodic, and no retraining, across

multiple datasets, to quantify the impact of the retraining frequency on the computational

cost of ensemble forecasting.
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• We provide practical guidelines for organizations and practitioners on assessing when and

how frequently to retrain ensemble forecasting models to obtain an effective balance between

predictive accuracy and computational cost.

By tackling these issues, this paper contributes to both forecasting and machine learning

communities, offering valuable insights into the trade-offs among accuracy, computational efficiency,

and sustainability in the use of an ensemble of global forecasting models.

1.3. Overview

The rest of this paper is organized as follows. After a brief review of related works (Section 2),

in Section 3 we describe the design of the experiment used in our study. The datasets and their

characteristics are presented in 3.1, while the global forecasting models and the ensemble strategies

are shown in 3.2. The concepts related to rolling origin evaluation and retrain scenario are explained

in 3.3, while the metrics used to assess the accuracy and cost of models are discussed in 3.4. In

Section 4 we show the empirical findings of our study, including forecast accuracy, computing time,

and cost analysis of the different scenarios and across the different ensembles. Finally, Section 5

contains our summary and conclusions.

2. Related works

The cross-learning approach in time series forecasting has witnessed substantial advancements

in recent years, becoming a central theme in contemporary research. Today, global models are

commonly used as benchmarks in empirical studies, underscoring their growing relevance in the field

Semenoglou et al. (2021). Additionally, theoretical contributions from Montero-Manso & Hyndman

(2021) and Montero-Manso (2023) have shown that global models can achieve accuracy comparable

to local models with reduced complexity and without relying on assumptions about data similarity.

Indeed, global models have proven particularly effective across a variety of forecasting domains,

especially in retail forecasting domain (Makridakis et al., 2022a), and several methods have been

proposed to further boost their performance (Godahewa et al., 2021a; Bandara et al., 2020, 2021).

In particular, ensemble learning is a powerful tool in the forecasters’ hands offering a reliable

strategy to enhance accuracy and robustness by combining the strengths of multiple models, not

only in the cross-learning context (Wang et al., 2023). Relative to point forecasting, many different
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combination methods have been proposed: linear combinations with optimal weights (Newbold

& Granger, 1974), performance based weighting (Pawlikowski & Chorowska, 2020), criteria-based

weighting (Kolassa, 2011), and many different approaches based on stacking, or meta-learning

(Wang et al., 2023). However, time series forecasting competitions have shown that simple ensemble

strategies, like simple mean or median, are extremely accurate, yet efficient (Makridakis et al.,

2022b). Indeed, simple combination schemes are hard to beat, and the simple arithmetic average of

predictions with equal weights remains the most widely used and surprisingly effective combination

rule (Claeskens et al., 2016).

Most evaluations of global models emphasize point forecast accuracy, likely due to the fact

that many machine learning and deep learning algorithms do not natively produce probabilistic

outputs (Makridakis et al., 2022c). However, in applications such as supply chain management,

quantifying uncertainty is essential, whether through prediction intervals, quantiles, or full predictive

distributions (Fildes et al., 2022). In this regard, the Conformal Inference framework introduced by

Vovk et al. (2005) offers a flexible tool for uncertainty quantification, and has been successfully

applied to time series forecasting problems (Stankeviciute et al., 2021). Forecast combinations in

the context of probabilistic predictions are an active area of research. Different methods have been

proposed, from linear pooling, Bayesian model averages, and integral combinations (Wang et al.,

2023). However, quantile aggregation via simple average has proven to be effective and accurate

(Smyl & Hua, 2019; Busetti, 2017).

From the perspective of model retraining, the most comprehensive investigation in the context

of global models has been conducted by Zanotti (2025), who found that reducing the retraining

frequency of global models can lower forecasting costs without harming accuracy. Other works,

such as Spiliotis & Petropoulos (2024), explored retraining strategies and parameter updates for

local exponential smoothing models, while Huber & Stuckenschmidt (2020) examined retraining in

retail demand forecasting using a limited range of models and datasets. Although these studies offer

useful insights, direct analysis on the effects of retraining ensemble models remains unexplored.

The question of whether ensemble methods are consistently worthwhile is relevant both for

the forecasting and the broader machine learning community. Indeed, the growing advocacy for

sustainable AI (Schwartz et al., 2020; Getzner et al., 2023) highlights the importance of evaluating

the environmental and computational costs of model development and maintenance. Our study
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directly addresses this gap by systematically evaluating different ensemble strategies’ cost-accuracy

trade-off. We also assess how different updating frequencies affect the forecasting accuracy across

the ensemble models, with the aim of testing whether less frequent retraining can be an effective

tool to manage this trade-off. Answering these questions, this research provides both theoretical

clarity and practical guidelines towards more sustainable forecasting practices.

3. Experimental design

This section presents the empirical analysis performed to assess the performance of ensemble

models and to determine whether reducing the frequency of retraining can yield forecasting accuracy

comparable to that of a baseline scenario, involving continuous retraining, while systematically

decreasing the forecasting costs. We begin by introducing the datasets used in the experiments,

followed by a description of the ensemble learning models employed. Finally, we outline the

evaluation strategy, including the performance metrics, the different retraining scenarios considered,

and the approach used to assess forecast performance and costs.

3.1. Datasets

For our experiments, we utilized two prominent retail forecasting datasets: the M5 and VN1

competition datasets. The M5 competition, part of the M-competitions series led by Spyros

Makridakis and collaborators, was designed to benchmark forecasting methods in a retail demand

setting (Makridakis et al., 2022b). The M5 dataset (Howard & Makridakis, 2020) is widely

recognized and extensively studied, comprising 3,049 daily time series representing unit sales of

Walmart products. These sales span three main product categories, Food, Hobbies, and Household,

across ten stores in three U.S. states: California, Texas, and Wisconsin. Covering the period

from 2011 to 2016, the dataset features highly intermittent time series organized hierarchically,

enabling multi-level forecasting (e.g., individual SKUs, categories, stores, and states). It also

includes relevant exogenous variables such as prices, promotions, and special events like holidays.

The VN1 Forecasting – Accuracy Challenge, launched in October 2024 by Flieber, Syrup Tech, and

SupChains, marked the first edition of its kind (Vandeput, 2024). This dataset consists of weekly

sales data for 15,053 products sold from 2020 to 2024 by various e-vendors, primarily based in the

U.S. Unlike the M5 dataset, which contains sales from a single retailer (Walmart) and a limited

number of physical stores, the VN1 dataset aggregates sales across 328 warehouses operated by 46
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distinct retailers. To the best of our knowledge, we are among the first to benchmark forecasting

models on this dataset. Together, these two datasets represent the most recent and comprehensive

publicly available collections of time series related to retail demand, providing a strong foundation

for generalizing our findings in the domain of demand forecasting.

Table 1: The M5 and the VN1 datasets used in the experiments.

Dataset Frequency N. Series Min Obs per Series

M5 Daily (7) 28.298 730

VN1 Weekly (52) 15.053 157

In both datasets we concentrate on the most granular level (individual SKUs), because the

potential gains from reduced retraining are greatest at lower aggregation levels. To ensure a

consistent evaluation strategy (Section 3.3), we filtered the series: daily SKUs retained at least two

years of data (more than 730 observations), while weekly SKUs required a minimum of three years

(more than 157 observations).

3.2. Forecasting models

In this study, we focused exclusively on global forecasting methods, as we used only this

category of models as base learners for our ensembles. Global approaches have become standard in

many industries dealing with large-scale time series data, such as retail demand forecasting, where

predictions must be made for thousands of SKUs (Januschowski et al., 2020). Indeed, our primary

objective is to assess the performance of ensemble models obtained by combining the predictions of

different global models trained on large datasets.

A global forecasting model can be defined as:

Y h
i = F (Y,Θ), (1)

where forecasts for a horizon h for each individual time series Yi are generated using a single

model F trained on the entire set of time series in a dataset Y. Hence, using the global modeling

paradigm, it is possible to leverage cross-learning to allow the model to learn shared patterns across

all time series. Indeed, the model parameters Θ are shared across all series.
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Table 2: Global forecasting models used in the experiment.

Machine Learning Deep Learning

Linear Regression (LR) (Godahewa et al., 2021b) MLP (Rosenblatt, 1958)

Random Forest (RF) (Breiman, 2001) LSTM (Hochreiter & Schmidhuber, 1997)

XGBoost (Chen & Guestrin, 2016) TCN (Van den Oord et al., 2016)

LGBM (Ke et al., 2017) NBEATS (Oreshkin et al., 2020)

CatBoost (Prokhorenkova et al., 2018) NHITS (Challu et al., 2022)

To ensure a comprehensive evaluation of the ensemble models, we included both traditional

machine learning models and state-of-the-art deep learning techniques as base learners, chosen for

their proven effectiveness in time series forecasting and their methodological diversity. In particular,

Table 2 shows the ten different global forecasting models we trained in our experiments.

Machine learning models are generally easier to train than deep learning approaches but often

rely heavily on extensive and careful feature engineering to achieve strong forecasting performance

(Januschowski et al., 2022). In contrast, deep learning models can automatically learn relevant

features, such as lags or rolling statistics, within their architecture, reducing the need for manual

preprocessing. However, they are typically more challenging to train due to their larger number of

hyperparameters, which can significantly influence forecast accuracy (Smyl, 2020). As in Zanotti

(2025), we implemented simplified feature engineering pipelines inspired by the top-performing

solutions in the M5 and VN1 competitions. Our feature set included standard time series features

such as lags, rolling and expanding means, as well as calendar-related variables like year, month,

week, and day of the week. We also integrated static metadata, such as store, product, category, and

location identifiers, based on the dataset’s characteristics. For the M5 dataset, we further included

external variables like special events. Hyperparameters were chosen based on configurations from

leading competition entries when available; otherwise, we used the default values recommended by

the respective libraries.

3.2.1. Ensemble learning

Ensemble learning aggregates the predictions of multiple base models to enhance forecast

accuracy and reliability, especially when different models capture diverse and complementary
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patterns in the data. This approach is particularly beneficial in global forecasting, where the use of

a single model can lead to instability or overfitting due to the heterogeneous nature of the time

series being modeled (Wang et al., 2023). To address these challenges, forecast combinations help

by balancing out the individual biases and variances of the base models. In a general formulation,

an ensemble forecasting model combines the outputs of multiple models. Using the same notation

as before, where Y is the set of all time series and Θ(j) denotes the parameters of the j-th base

model F (j), the ensemble prediction for series Yi at horizon h can be defined as:

Y h
i = G

(
F (1)(Y,Θ(1)), F (2)(Y,Θ(2)), . . . , F (J)(Y,Θ(J))

)
. (2)

Here, G is the ensemble function (e.g., mean, median, weighted average) that combines the

forecasts of J base models.

In our study, we adopted an ensemble approach that combines the models’ predictions using

a simple average. The simple average is a widely used method in forecasting to create forecast

combinations due to its simplicity, proven effectiveness in improving prediction robustness, and is

often more accurate than theoretically optimal combinations (Claeskens et al., 2016). Therefore,

being G the simple mean, the ensemble forecast for series Yi at horizon h becomes:

Y h
i =

1

J

J∑
j=1

F (j)(Y,Θ(j)). (3)

Furthermore, since we are not only interested in point forecast accuracy, in the context of

probabilistic forecasting, ensemble methods can also be applied to combine predictive distributions.

A common and straightforward approach is to average the predicted quantiles across base models

(Wang et al., 2023). That is, for each desired quantile level (e.g., 0.1, 0.5, 0.9), the ensemble forecast

simply takes the mean of the corresponding quantiles predicted by the individual models. Despite

its simplicity, this method is often effective and overall seems to be preferred compared to other

combination techniques (Smyl & Hua, 2019). Moreover, equally weighting quantiles through a

simple average yields robust and improved forecast skill because the error in estimating optimal

weights usually exacerbates the ensemble predictions (Busetti, 2017). Lastly, simple combination

methods have the lowest computational time possible 1, allowing us to effectively study, without

1Simple combinations, such as the mean or median, require only basic arithmetic operations on the forecast outputs

of the base models, avoiding the need for model training or optimization, as is required in more complex approaches

like meta-learning.
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loss of generality, the associated costs of ensembling.

In our study, we employed simple mean ensembles to combine the forecasts of multiple global

models, following two distinct selection criteria. The first strategy, which we refer to as ENSACC,

combines the base models that demonstrated the highest individual point forecast accuracy (mea-

sured by Equation 4). This approach aims to leverage the strengths of top-performing models,

under the assumption that their combined output will retain strong predictive performance while

potentially offsetting individual weaknesses. The second strategy, ENSTIME, focuses instead on

computational efficiency by combining the models with the lowest training and inference times. This

ensemble reflects a pragmatic choice for real-world forecasting systems where computational cost is

a critical constraint, such as in large-scale retail applications. For both strategies, we constructed

ensembles of increasing size, combining the top 2, 3, 4, and 5 models according to each criterion.

Table 3 shows the composition of the eight different ensembles for each dataset. This tiered design

allows us to assess how forecast accuracy and computational efficiency evolve as additional models

are added to the ensemble. Limiting the maximum ensemble size to five models (out of eight

or ten, depending on the dataset) reflects a balance between potential accuracy gains and the

diminishing returns or increased complexity often observed with larger ensembles (Wang et al.,

2023). This systematic approach enables a thorough evaluation of the trade-off between accuracy

and computational cost in ensemble-based global forecasting.

All models were implemented in Python using Nixtla’s framework (Nixtla, 2022). Specifically,

the mlforecast library was used to train the machine learning models, while neuralforecast was

employed for efficiently training the deep learning models.

3.3. Evaluation strategy

In this section, we introduce the concepts of retraining scenarios and rolling window forecasting

that we used in our experiment.

3.3.1. Retrain scenario

Following Zanotti (2025), we evaluated multiple retraining scenarios, or retrain windows. A

retrain scenario r denotes a positive integer indicating how often the model is updated, or retrained.

Specifically, r defines the number of new observations that must be collected before retraining

occurs. These scenarios are tailored to the frequency of each dataset, which in turn determines the
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Table 3: Composition of ENSACC and ENSTIME ensembles for the M5 and VN1 datasets.

Dataset Ensemble Models Included

M5

ENSACC (Accuracy-driven combinations)

ENS2A XGBoost, LGBM

ENS3A XGBoost, LGBM, LR

ENS4A XGBoost, LGBM, LR, NBEATSx

ENS5A XGBoost, LGBM, LR, NBEATSx, MLP

ENSTIME (Time-efficient combinations)

ENS2T CatBoost, LR

ENS3T CatBoost, LR, XGBoost

ENS4T CatBoost, LR, XGBoost, MLP

ENS5T CatBoost, LR, XGBoost, MLP, NBEATSx

VN1

ENSACC (Accuracy-driven combinations)

ENS2A MLP, NBEATSx

ENS3A MLP, NBEATSx, NHITS

ENS4A MLP, NBEATSx, NHITS, RF

ENS5A MLP, NBEATSx, NHITS, RF, XGBoost

ENSTIME (Time-efficient combinations)

ENS2T LR, XGBoost

ENS3T LR, XGBoost, CatBoost

ENS4T LR, XGBoost, CatBoost, MLP

ENS5T LR, XGBoost, CatBoost, MLP, TCN
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forecast horizon and business review cycles. Table 4 summarizes the selected retraining windows,

test periods, and forecast horizons.

Table 4: The retraining scenarios, the test window, and the horizon for the M5 and the VN1 datasets.

Dataset Frequency Retraining Scenarios (r) Test Window (T) Horizon (h)

M5 Daily (7) 7, 14, 21, 30, 60, 90, 120, 150, 180, 364 364 28

VN1 Weekly (52) 1, 2, 3, 4, 6, 8, 10, 13, 26, 52 52 13

For example, r = 7 for daily data implies weekly retraining. Each list contains ten scenarios

to ensure a broad yet computationally feasible exploration. The scenario with r = 1, known as

continuous retraining, is the most computationally intensive and typically the most accurate, as the

model always uses the most recent data. Hence, we adopt it as our benchmark for both accuracy

and cost. However, for daily data, we consider r = 7 (weekly retraining) as the practical benchmark,

since daily updates are uncommon in real-world settings. Conversely, the no-retraining scenario

r = T , where T is the length of the test set, fits the model only once and uses it for the entire

forecasting horizon, minimizing computational load but likely yielding the lowest accuracy. All

intermediate values 1 < r < T represent periodic retraining strategies, where both forecast accuracy

and computational cost are expected to decrease as r increases.

Since we use global models, the training set at each retraining step includes all time series in the

dataset, each extended by r new observations. We evaluate two update strategies: (i) full retraining

at each window r, or (ii) no update between retrain points, i.e., the model remains unchanged for

the next r periods.

3.3.2. Rolling window evaluation

Out-of-sample evaluation is essential in time series forecasting to assess a model’s ability to

generalize to unseen data, especially given the potential for structural changes or unanticipated

shifts in future values (Tashman, 2000). Among evaluation strategies, rolling origin evaluation is

widely recognized as the most appropriate approach (Bergmeir & Beńıtez, 2012). This method

systematically assesses forecast accuracy over multiple iterations by simulating repeated forecasting

cycles. The procedure starts by splitting the series into a training and a test set, maintaining the

chronological order. At each step, the model is trained on the current training set and used to
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predict the next h observations. The forecast origin is then shifted forward by a fixed step, and the

process is repeated, either with a growing (expanding) or fixed-size training window. Performance

metrics (see Section 3.4) are averaged over all iterations to provide a robust estimate of forecasting

accuracy.

Compared to fixed origin evaluation, which offers only a single evaluation point, rolling origin

evaluation provides a more robust assessment by capturing performance across varying conditions

such as seasonal shifts, level changes, or trend evolutions (Bergmeir & Beńıtez, 2012). This is

particularly beneficial in dynamic settings like retail or supply chain management, where models

must adapt to frequent changes. The setup is flexible: the training window can either expand

to include all available past data or remain fixed to a specified length. Most practitioners favor

the expanding window, especially when time series are short, as it leverages the full data history

(Petropoulos & et al., 2022). In our study, we adopt the expanding window strategy to better

reflect realistic business forecasting practices and to accommodate short series, such as those in the

weekly VN1 dataset. Following Zanotti (2025), Table 4 outlines the key parameters used in our

experiments. Lastly, we set the step size to one in all cases to maximize the number of evaluation

points across each retraining scenario.

3.4. Evaluation metrics

Evaluating the accuracy of point forecasts in time series analysis remains a debated topic.

Although numerous metrics exist to assess model performance, there is no clear consensus in

the literature on which metric is superior (Hewamalage et al., 2023). Given that our focus is

on SKU-level demand forecasting, where data is typically intermittent, error metrics based on

absolute or percentage deviations are suboptimal, as they emphasize the median rather than the

full distribution (Kolassa, 2020). Furthermore, due to scale variations across series, employing

a scale-independent metric is essential. To address these concerns, following Zanotti (2025), we

adopted the Root Mean Squared Scaled Error (RMSSE), introduced by Hyndman & Koehler (2006),

as our primary point forecast accuracy measure. RMSSE is calculated as:

RMSSE =

√√√√ 1
h

∑n+h
t=n+1(yt − ŷt)2

1
n−s

∑n
t=s+1(yt − yt−s)2

. (4)

This metric compares the mean squared error of a forecast to that of a seasonal näıve benchmark,

providing a relative performance measure. It was the official evaluation metric used in the M5
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competition (with s = 1) (Makridakis et al., 2022b), one of the datasets analyzed in our study.

Lower RMSSE values indicate more accurate forecasts.

Beyond point accuracy, we also assessed the probabilistic quality of forecasts across different

retraining scenarios. Since most of the machine learning and deep learning models we use do not

natively produce probabilistic outputs, we employed Conformal Inference to generate prediction

intervals. Conformal Inference is a versatile framework that quantifies predictive uncertainty using

a calibration (validation) set, without relying on strong distributional assumptions (Vovk et al.,

2005). Originally developed for i.i.d. data, it has recently been adapted to time series contexts

(Stankeviciute et al., 2021). Its properties, distribution-free, model-agnostic, efficient, and suitable

for small datasets, make it especially well-suited for forecasting benchmarks involving diverse models

and datasets. As in Zanotti (2025), to evaluate the quality of the prediction intervals, we used the

Quantile Loss (QL), also known as Pinball Loss, and its average form, the Multi-Quantile Loss

(MQL):

QL =
1

h

n+h∑
t=n+1

(q · (yt − ŷt) · Iyt≥ŷt + (1− q) · (ŷt − yt) · Iyt<ŷt) , (5)

MQL =
1

Q
∑
q∈Q

QL(q). (6)

As a proper scoring rule, QL enables a rigorous evaluation of probabilistic forecasts (Kolassa,

2016). MQL, particularly in its weighted form, was the principal metric in the M5 Uncertainty

competition (Makridakis et al., 2022c).

For our analysis, we constructed prediction intervals around the median and six central levels:

60%, 70%, 80%, 90%, 95%, and 99%, yielding a total of 13 quantiles. The lower quantiles (e.g.,

median, 60%, 70%) describe the forecast center, while the upper quantiles (90% and above) are

crucial for assessing tail risks, key to managing safety stock in retail settings (Barrow & Kourentzes,

2016). These quantiles offer a well-rounded view of forecast uncertainty. To ensure valid estimation

of predictive uncertainty, conformal prediction intervals were computed on validation sets at least

twice the length of the forecast horizon. This requirement limited the number of time series we

could retain in the dataset, as explained in previous sections.

In addition to accuracy, we explicitly evaluated the computational cost of generating forecasts

by measuring Computing Time (CT), defined as the number of seconds needed to train a model and
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produce h step-ahead forecasts (Zanotti, 2025). CT directly reflects forecasting costs in real-world

deployments, especially when using cloud-based infrastructure with pay-as-you-go pricing (Spiliotis

& Petropoulos, 2024). Thus, CT was recorded for each model across all retraining scenarios, with

lower CT values indicating more efficient forecasting.

To facilitate consistent comparisons, results for all evaluation metrics were normalized relative

to the baseline (most frequent) retraining scenario for each dataset frequency. To statistically

assess performance differences across scenarios, we applied the Friedman-Nemenyi test for multiple

comparisons (Demšar, 2006).

All experiments were conducted using a Microsoft Azure NC6s v3 cloud instance running Ubuntu

24, equipped with 1 GPU, 6 CPU cores, and 112 GB of memory.

4. Results and discussion

This section presents and interprets the empirical findings of our study, highlighting the

interplay between accuracy, probabilistic performance, computing time, and total cost across

different retraining strategies and ensemble configurations. We draw insights from both the M5 and

VN1 datasets to identify consistent patterns and dataset-specific nuances.

Table 5 summarizes the performance and computational time of all forecasting methods evaluated

in this study, across both the M5 and VN1 datasets. The models are grouped into four categories:

Machine Learning (ML), Deep Learning (DL), ENSACC (ensembles optimized for accuracy), and

ENSTIME (ensembles optimized for computational efficiency). For each method, the table reports

three key metrics per dataset: RMSSE (Root Mean Squared Scaled Error) to assess point forecast

accuracy, MQL (Multi-Quantile Loss) to evaluate probabilistic forecast performance, and CT

(Computing Time, in seconds) to reflect the computational time under a cloud-based setting.

Overall 2, the models evaluated achieved better absolute performance on the M5 dataset than

on VN1. Several factors may explain this difference, including the larger dataset size, the higher

frequency of the time series in M5, the availability of rich external regressors (e.g., promotions,

special events), and the presence of well-established benchmark hyperparameter settings, many of

which were not available for VN1 during model training.

2The overall results are derived from the baseline scenario, that is r = 7 for M5 and r = 1 for VN1, as this setting

is regarded as standard in both theoretical and practical applications.
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Table 5: Overall forecasting performance and computational cost for each method across datasets. RMSSE, MQL,

and CT (in seconds). Minimum values per column are highlighted in bold.

Type Method
M5 VN1

RMSSE MQL CT RMSSE MQL CT

ML

LR 0.777 0.267 11373 6.549 2.896 236

RF – – – 1.868 2.590 24862

XGBoost 0.755 0.258 15417 1.890 2.469 530

LGBM 0.771 0.256 44429 3.542 2.625 7824

CatBoost 0.947 0.263 10424 5.762 2.845 805

DL

MLP 0.821 0.281 17584 1.543 2.492 962

LSTM – – – 1.913 2.843 1284

TCN 0.865 0.290 33364 1.913 2.843 1127

NBEATSx 0.815 0.279 21226 1.698 2.626 1244

NHITS 0.828 0.284 21969 1.699 2.632 1251

ENSACC

Ens2A 0.757 0.255 59846 1.472 2.369 2205

Ens3A 0.757 0.256 71219 1.517 2.410 3456

Ens4A 0.758 0.249 92445 1.524 2.386 28318

Ens5A 0.763 0.251 110029 1.544 2.375 28849

ENSTIME

Ens2T 0.814 0.230 21797 5.719 2.545 766

Ens3T 0.776 0.223 37214 5.536 2.588 1572

Ens4T 0.764 0.218 54797 4.472 2.419 2533

Ens5T 0.763 0.220 76024 3.672 2.339 3660
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Figure 1: Friedman-Nemenyi test results of ensembles based on RMSSE.

Analyzing the point forecasting accuracy, the RMSSE confirms the effectiveness of ensemble

methods in both datasets. In general, ENSACC ensembles (those optimized for accuracy) consistently

outperform individual base models. The accuracy improvements, however, show diminishing returns

beyond three or four models, aligning with the well-documented phenomenon in ensemble literature

where the marginal gain from adding more models decreases. Notably, while ENSACC ensembles

dominate in accuracy, ENSTIME ensembles (optimized for computational efficiency) still provide

competitive results in the M5 dataset, demonstrating that even time-efficient combinations can retain

good predictive power. Interestingly, ENSTIME ensembles show increasing returns in accuracy as

more models are added: their performance consistently improves with each additional component.

Indeed, in contrast to ENSACC ensembles, where combining just two models is often sufficient to

achieve optimal performance (as illustrated in Figure 1), ENSTIME combinations benefit from

larger ensemble sizes, with forecast accuracy continuing to improve as more low-cost models are

included.

A similar pattern emerges for probabilistic accuracy evaluated using Multi-Quantile Loss (MQL).

Compared to base models, ensembles achieve superior uncertainty quantification, benefiting from the

diversity in quantile predictions among different models. Simple averaging across quantiles proves to

be a highly effective strategy. Also, in this case, ENSACC forecast combinations exhibit diminishing

returns in accuracy as more models are added. On the contrary, increasing the number of models
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Figure 2: Friedman-Nemenyi test results of ensembles based on MQL.

in the ensemble based on computational efficiency leads to consistently improved probabilistic

forecasting performance, which may even outperform the ENSACC combinations. As shown in

Figure 2, ENSTIME ensembles achieve significantly better probabilistic forecasting performance on

the M5 dataset compared to all accuracy-based combinations. In contrast, for ENSACC ensembles,

combining more than two base models does not yield additional improvements, confirming once

again that a small, high-performing subset is sufficient in that case.

Unsurprisingly, ensemble models require significantly more computing time than individual

models, with algorithms like LGBM and RF contributing disproportionately to this overhead.

ENSACC ensembles are especially time-intensive, as they often include the most computationally

demanding models. In contrast, ENSTIME ensembles maintain a more manageable runtime profile

by design, though they still incur a higher computational cost than their individual components

due to the cumulative effect of combining multiple models.

Figure 3 presents the point forecast accuracy of each ensemble model across various retraining

scenarios for both the M5 and VN1 datasets. To facilitate comparison, the results are expressed in

relative terms with respect to the baseline retraining scenarios (r = 7 for M5 and r = 1 for VN1).

The RMSSE trajectories of the ENSACC ensembles exhibit remarkable stability across retraining

periods. In the M5 dataset, their accuracy remains virtually unchanged regardless of retraining

frequency, while in the VN1 dataset, performance even improves in some scenarios. For most
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Figure 3: RMSSE results for each ensemble and retrain scenario combination in relative terms with respect to the

baseline scenario, r = 7 for the M5 dataset and r = 1 for the VN1 dataset.

ensemble models, particularly under low-frequency retraining (i.e., periodic updates), performance

is nearly indistinguishable from the baseline. Although slight accuracy degradation is observed

for the ENSTIME ensembles under less frequent retraining, it remains modest—below 2% in M5

and under 5% in VN1, even in the no-retraining condition. These findings build upon and extend

the results of Zanotti (2025), suggesting that reducing retraining frequency does not significantly

harm the point forecast accuracy of global model ensembles. This robustness likely stems from the

relative stability of the datasets, which do not exhibit substantial structural changes or concept drift.

Under such conditions, base models continue to capture underlying demand patterns effectively

over time, and ensemble combinations further enhance stability as retraining becomes less frequent.

Similarly, Figure 4 illustrates the relative accuracy of the ensemble models in a probabilistic

forecasting context, as measured by the Multi-Quantile Loss (MQL). For the M5 dataset, we observe

a clear trend where probabilistic accuracy decreases as retraining becomes less frequent, indicating

that regular updates are beneficial for maintaining high-quality uncertainty estimates. This pattern

holds across the different ensemble strategies. However, for ENSACC ensembles, the decline in

accuracy is minimal for frequent retraining scenarios and becomes slightly more noticeable at higher

levels of retraining, though it remains within 5 percentage points. A consistent performance gap

is also evident between ENSACC and ENSTIME ensembles, with the former outperforming the
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Figure 4: MQL results for each ensemble and retrain scenario combination in relative terms with respect to the

baseline scenario, r = 7 for the M5 dataset and r = 1 for the VN1 dataset.

latter as the retraining scenario increases. This difference is largely attributable to the inclusion

of CatBoost in the ENSTIME ensembles, a model that shows relatively weak performance in this

setting. In contrast, the VN1 dataset reveals a different behavior. Here, the relationship between

retraining frequency and probabilistic accuracy follows a near-convex pattern. Performance initially

improves with less frequent retraining, peaking around r = 4, and begins to decline thereafter.

This suggests that very frequent updates may not be necessary for probabilistic performance in

stable, lower-frequency datasets like VN1. Nevertheless, ENSACC ensembles continue to outperform

ENSTIME ones across the retraining scenarios. Interestingly, the rate of performance deterioration

with increased retraining window is comparable across both ensemble strategies in VN1, indicating

that the marginal impact of retraining frequency is relatively uniform across the proposed ensemble

techniques. Also these results on the probabilistic performance of ensembles are comparable to

those obtained by Zanotti (2025) on the base models.

The Friedman-Nemenyi tests, used to compare the accuracy produced by the same model over

different retraining scenarios, confirm the previous results (see Supplementary material). Specifically,

in the evaluation of both point forecast accuracy and probabilistic forecast accuracy, some level of

periodic retraining is at least as good as the continuous retraining scenario.

Figure 5 illustrates the relative computational time (CT) across different retraining scenarios
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for both the M5 and VN1 datasets. As anticipated, CT decreases sharply as the retraining interval

increases, with the reduction following an approximately exponential pattern. This effect is more

pronounced in the VN1 dataset, likely due to its smaller size compared to M5. Specifically, moving

from the baseline retraining scenario to the first periodic setting (r = 14) results in a roughly 33%

reduction in computing time for M5, while for VN1, CT is nearly halved. As dataset size increases,

Figure 5: CT results for each ensemble and retrain scenario combination in relative terms with respect to the baseline

scenario, r = 7 for the M5 dataset and r = 1 for the VN1 dataset.

the marginal gains in CT from reducing retraining frequency appear to depend more on the number

of models in the ensemble (ensemble depth) than on the ensemble type (ENSACC vs. ENSTIME).

Simpler ensembles composed of only 2 or 3 models benefit most from reduced retraining, exhibiting

steeper declines in CT. Moreover, ENSACC and ENSTIME ensembles show very similar CT profiles

when matched by depth, suggesting that computational efficiency in this context is more a function

of ensemble size than selection strategy. This distinction is less pronounced in the VN1 dataset,

given its smaller scale and shorter time series. These findings have direct implications for forecasting

cost management, emphasizing the importance of considering retraining frequency and ensemble

size when selecting models for large-scale operational use.

Overall, the evidence from Figures 3, 4, and 5, along with the statistical significance tests,

indicates that reducing the retraining frequency of ensemble models does not negatively impact

their predictive accuracy. At the same time, it lowers the computational time required to generate
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forecasts. However, effectively leveraging this time reduction depends on carefully considering

the ensemble size. As more models are included in the ensemble, the relative benefit of periodic

retraining diminishes compared to using only a single model as in Zanotti (2025). Consequently,

both the retraining frequency and the ensemble depth play a critical role in managing computational

efficiency, and ultimately the cost, of ensemble-based forecasting systems.

As previously noted, computational time can be directly translated into monetary cost for

organizations. In line with Nikolopoulos & Petropoulos (2018); Fotios Petropoulos & Spiliotis (2024);

Zanotti (2025), we adopted standard pricing assumptions for cloud computing services to estimate

both the overall cost of forecasting and the specific costs associated with each retraining scenario

for the base global models and each ensemble 3. Figures 6, 7, 8 9, and 10 illustrate the estimated

forecasting costs for a large-scale retailer, assuming a computing service rate of $3.5 per hour, with

200,000 unique SKUs and 5,000 stores. Total forecast production cost, computed by combining

training time and forecast generation under a cloud-computing pricing model, highlights the trade-off

central to our study. ENSACC ensembles incur the highest costs, rapidly reaching millions of dollars

under frequent retraining. In contrast, ENSTIME ensembles offer a more sustainable alternative,

reducing costs by over 50% in many cases. Moreover, as dataset size increases, the trade-off between

forecast accuracy and cost becomes significantly more pronounced. This is clearly illustrated in

Figures 7 and 8. For the VN1 dataset, ensemble methods offer noticeable improvements in both point

and probabilistic forecasting accuracy compared to most individual base models, while incurring

only a modest increase in cost. In this context, there is little reason to favor ENSTIME ensembles

over ENSACC ones, as the cost difference is minor and the performance gain from accuracy-based

combinations is evident. However, the situation is quite different for the M5 dataset. Here, ensemble

models, particularly those optimized for accuracy, are significantly more expensive than individual

models. Additionally, the performance advantage of ENSACC ensembles over the most accurate

base models is minimal in terms of both RMSSE and MQL. In contrast, ENSTIME ensembles

can achieve comparable levels of accuracy with substantially lower additional cost, making them a

more attractive option. It is also clear that increasing the number of models in an ensemble does

not necessarily lead to proportional gains in forecasting accuracy, which raises questions about

3It is important to note that the costs have been normalized by the number of SKUs in each dataset, allowing for

direct comparison across datasets. This normalization enables meaningful conclusions to be drawn regarding the

impact of time series frequency on forecasting costs.
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Figure 6: Cost analysis. Overall cost results for the M5 and VN1 datasets.

the cost-effectiveness of larger combinations. Notably, forecast combinations that disregard the

computational efficiency of their base models can lead to excessive and unjustified costs. This is

particularly evident in the case of Ens4A and Ens5A on the VN1 dataset, where the inclusion

of Random Forest (a highly expensive model in this context) results in disproportionately high

forecasting costs with only marginal accuracy improvements.

Finally, 9 and 10 show the comparison between base models and ensembles across all retraining

scenarios. As expected, forecasting costs decrease exponentially with less frequent retraining. Across

both datasets, ENSTIME ensembles consistently incur lower costs than their ENSACC counterparts.

Moreover, the cost-saving benefits of reduced retraining frequency become more pronounced as

dataset size increases. In the VN1 dataset, cost differences between retraining scenarios remain

relatively small, even for ensemble models, suggesting limited sensitivity to retraining frequency. In
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Figure 7: Cost analysis. RMSSE vs Cost ($) for the M5 and VN1 datasets.

Figure 8: Cost analysis. MQL vs Cost ($) for the M5 and VN1 datasets.
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Figure 9: Cost analysis. Comparison between base models and ensembles for the M5 dataset. Each method and

retrain scenario combination are shown in relative terms with respect to the baseline scenario, r = 7.

contrast, the M5 dataset exhibits steady, incremental reductions in cost as retraining becomes less

frequent. For example, in the M5 setting, the average cost of continuous retraining for ensemble

models is approximately $2,250,000, more than triple the average cost of individual base models.

When retraining is entirely eliminated, this figure drops to around $500,000, representing a cost

reduction of over 75%. However, even in the no-retraining scenario, ensemble models remain roughly

twice as expensive as the average base model. Interestingly, the cost gap between ENSACC and

ENSTIME ensembles narrows for smaller ensembles (e.g., those with two or three base models) as

retraining frequency decreases. This indicates that with less frequent retraining, accuracy-based

combinations (ENSACC) become increasingly comparable to efficiency-based ones (ENSTIME)

in terms of forecasting cost. Thus, infrequent retraining can help align performance-optimized

ensemble strategies with more budget-conscious forecasting objectives.

One might argue that, for a large retailer, these costs (and the potential savings) are relatively

minor. However, it’s important to emphasize that the cost reductions achieved through a combination

of less frequent retraining, smaller ensemble sizes, and more efficient model combinations typically

come with no loss in forecasting accuracy, particularly for point forecasts. This makes such strategies

both economically and operationally attractive. These results further support our findings. ENSACC

ensembles dominate in accuracy but at a significant computational premium. ENSTIME ensembles
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Figure 10: Cost analysis. Comparison between base models and ensembles for the VN1 dataset. Each method and

retrain scenario combination are shown in relative terms with respect to the baseline scenario, r = 1.

represent a middle ground. Importantly, ensembles of just two or three models (e.g., ENS2A, ENS3T)

often achieve near-optimal performance, providing a compelling trade-off between complexity, cost,

and accuracy, and lowering the retraining frequency can be a good strategy to improve this trade-off

even in the context of ensemble learning. This comprehensive analysis reinforces the core message

of the article: ensemble methods offer strong accuracy benefits, but their cost can be substantial,

especially under frequent retraining. Balancing accuracy and sustainability requires a deliberate

model selection and retraining design, with lightweight ensembles, like ENSTIME, being a possible

solution in large-scale forecasting systems.

5. Conclusions

This study investigated the cost-effectiveness of ensemble learning in global time series forecasting,

focusing on the interplay between forecast accuracy, computational efficiency, and retraining

strategies. We evaluated ten global forecasting models, spanning both classical machine learning

and deep learning techniques, alongside eight ensemble configurations, across two large-scale and

industry-relevant datasets: the M5 and VN1 retail forecasting datasets. By systematically comparing

different ensemble sizes, selection criteria (accuracy-based vs. efficiency-based), and retraining
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frequencies, our aim was to assess whether the accuracy gains of ensemble methods justify their

additional computational cost, particularly in large-scale operational settings.

Our findings showed that ensemble models consistently improve both point and probabilistic

forecasting performance over most individual base models. This improvement is also relevant

for probabilistic accuracy, where ensembles provide better uncertainty quantification through the

aggregation of diverse quantile predictions. The results support the notion that ensemble learning

offers a robust mechanism for improving predictive reliability and mitigating individual model

weaknesses, even in the context of global modeling. However, these benefits come at a cost. Ensemble

methods are substantially more computationally intensive than single-model approaches, particularly

when composed of complex or resource-heavy algorithms such as LightGBM or Random Forest.

These computational demands translate directly into higher forecasting costs under cloud-based

computing environments.

Our analysis further distinguished between two ensemble design philosophies: ENSACC

(accuracy-based) and ENSTIME (efficiency-based). While ENSACC ensembles generally deliver

higher accuracy, especially when composed of two or three strong base models, they are also

more expensive. In contrast, ENSTIME ensembles, composed of lightweight, computationally

efficient models, can achieve comparable accuracy at a much lower cost, making them an attractive

compromise in budget-sensitive applications. Most importantly, we find that increasing the number

of models in an ensemble does not always yield proportional accuracy gains and often results in

rapidly escalating costs. Small ensembles (with two or three base models) are often sufficient to

capture most of the benefit in accuracy.

Crucially, our study explored the effects of retraining frequency on ensemble performance and

cost. Even if these effects are more pronounced for the base models alone, we showed that less

frequent retraining can reduce computational time, without compromising point forecast accuracy,

also in the context of ensembles. In many scenarios, especially for relatively stable datasets, even

the no-retraining setup performed nearly as well as continuous retraining, confirming and extending

the findings from previous work on global models (Zanotti, 2025). Probabilistic forecasting accuracy

is more sensitive to retraining, especially for higher-frequency datasets like M5, but performance

declines remain modest for moderate retraining intervals. These insights are highly relevant for

real-world forecasting systems, where minimizing operational cost without sacrificing accuracy
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is essential. Indeed, organizations can achieve economic benefits by optimizing their retraining

strategies without compromising the forecast quality.

From a practical standpoint, our findings offer several actionable guidelines for forecasters and

organizations deploying large-scale forecasting systems. First, ensembles should be kept small

and strategically designed, prioritizing accuracy or efficiency depending on the business context.

Second, frequent retraining is often unnecessary. Overall, monthly retraining emerges as a practical

compromise for balancing probabilistic forecast accuracy with computational costs. However, if

the primary forecasting objective is point prediction, even less frequent retraining intervals can be

adopted without significantly affecting performance. Third, ENSTIME strategies represent a viable,

low-cost pathway to ensemble forecasting, especially when forecast robustness is desired without

substantial computational investment. Retailers and other large-scale forecasters can leverage these

insights to build forecasting systems that are both accurate and sustainable. Indeed, these findings

also carry broader implications for the sustainability of cross-learning driven forecasting systems.

Reducing the frequency of retraining not only lowers operational costs but also leads to significant

energy savings, thereby enhancing the environmental sustainability of forecasting processes. This

aligns with the principles of ”Green AI,” which advocates for the responsible use of computational

resources to minimize the ecological footprint of machine learning applications.

While our findings provide strong evidence on the effects of ensembling global forecasting models,

some limitations remain. First, we restricted our experiments to two retail datasets, which, while

comprehensive and realistic, may not capture the full diversity of time series behaviors found in

other domains such as finance, health care, or energy. Additionally, this study operates under the

assumption that the data-generating process remains stable, without notable trends or concept

drift. However, in many real-world scenarios, this assumption may not hold, potentially affecting

the reliability of less frequent retraining strategies. Moreover, our ensemble strategies used simple

averaging without dynamic weighting or more sophisticated stacking techniques, which may further

improve performance at the cost of added complexity and computation time. We also assumed

static cost estimates for computational resources, whereas real-world costs may vary based on cloud

infrastructure, parallelism, or vendor-specific pricing. We also deliberately focused on a global

modeling approach only, but local or hybrid frameworks may offer different cost-accuracy trade-offs

worth exploring. Finally, we encourage further studies to explore the possible trade-off between
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cost and forecast stability in the context of ensemble learning. In fact, the stability of forecasts is a

highly relevant yet underexplored topic, with important implications for model selection in time

series forecasting.

In conclusion, our study reinforces the value of ensemble forecasting in global modeling, show-

ing that well-designed ensemble strategies, particularly those leveraging periodic retraining and

lightweight components, can deliver high accuracy at a fraction of the computational cost. Striking

the right balance between accuracy, efficiency, and retraining frequency is key to deploying scalable

and sustainable forecasting systems in practice.
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Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research,

7 , 1–30. URL: http://jmlr.org/papers/v7/demsar06a.html.

Fildes, R., Ma, S., & Kolassa, S. (2022). Retail forecasting: Research and practice. International Journal of

Forecasting , 38 , 1283–1318. URL: https://www.sciencedirect.com/science/article/pii/S016920701930192X.

doi:https://doi.org/10.1016/j.ijforecast.2019.06.004. Special Issue: M5 competition.

Fotios Petropoulos, E. S., Yael Grushka-Cockayne, & Spiliotis, E. (2024). Wielding occam’s razor: Fast and frugal retail

forecasting. Journal of the Operational Research Society , 0 , 1–20. URL: https://doi.org/10.1080/01605682.2024.

2421339. doi:10.1080/01605682.2024.2421339. arXiv:https://doi.org/10.1080/01605682.2024.2421339.
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Supplementary material

In this section, we provide tables and figures related to the empirical results of the M5 and VN1

datasets.

The Tables 6 and 7 show the forecast accuracy of the different ensembles along the examined

retrain scenarios for the M5 daily dataset, while Table 8 depicts the computing time in seconds.

Method 7 14 21 30 60 90 120 150 180 364

Ens2A 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757

Ens3A 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757

Ens4A 0.758 0.758 0.758 0.759 0.758 0.758 0.758 0.758 0.759 0.759

Ens5A 0.763 0.763 0.763 0.764 0.763 0.764 0.763 0.764 0.764 0.764

Ens2T 0.814 0.827 0.814 0.826 0.822 0.830 0.826 0.827 0.828 0.824

Ens3T 0.776 0.786 0.776 0.786 0.784 0.787 0.785 0.786 0.787 0.785

Ens4T 0.764 0.773 0.764 0.773 0.772 0.774 0.772 0.773 0.773 0.772

Ens5T 0.763 0.771 0.762 0.772 0.771 0.772 0.770 0.771 0.772 0.771

Table 6: M5 RMSSE values for each method and retrain scenario combination.

The Tables 9 and 10 show the forecast accuracy of the different ensembles along the examined

retrain scenarios for the VN1 weekly dataset, while Table 11 depicts the computing time in seconds.

Figures 11 and 12 show the results of the Friedman-Nemenyi test in the context of point forecast

accuracy for the M5 and VN1 datasets respectively. Figures 13 and 14 present the test results

related to the probabilistic evaluation.

The costs tables 12 and 13 show the estimated cost in real values of each scenario for M5 daily

data.

The costs tables 14 and 15 show the estimated cost in real values of each scenario for VN1

weekly data.
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Method 7 14 21 30 60 90 120 150 180 364

Ens2A 0.255 0.255 0.256 0.256 0.258 0.258 0.259 0.259 0.259 0.262

Ens3A 0.256 0.256 0.257 0.257 0.259 0.259 0.260 0.260 0.261 0.263

Ens4A 0.249 0.250 0.251 0.251 0.253 0.254 0.255 0.255 0.256 0.259

Ens5A 0.251 0.251 0.252 0.253 0.255 0.256 0.257 0.257 0.259 0.261

Ens2T 0.230 0.265 0.228 0.267 0.267 0.269 0.268 0.269 0.269 0.270

Ens3T 0.223 0.257 0.221 0.258 0.260 0.261 0.261 0.261 0.262 0.263

Ens4T 0.218 0.253 0.216 0.255 0.256 0.257 0.257 0.258 0.259 0.261

Ens5T 0.220 0.254 0.218 0.257 0.258 0.259 0.260 0.260 0.262 0.264

Table 7: M5 MQL values for each method and retrain scenario combination.

Method 7 14 21 30 60 90 120 150 180 364

Ens2A 59846 32015 23124 17659 10899 8679 7551 7717 6374 5417

Ens3A 71219 38084 27513 20935 12911 10197 8962 9076 7507 6382

Ens4A 92445 54416 42478 34519 25299 22166 20632 20758 18966 17648

Ens5A 110029 68460 55343 46738 36710 33322 31713 31730 29678 28287

Ens2T 21797 11591 8297 6178 3705 2803 2494 2472 2025 1674

Ens3T 37214 19780 14141 10591 6272 4826 4243 4223 3427 2834

Ens4T 54797 33824 27005 22811 17684 15982 15323 15196 14139 13473

Ens5T 76024 50156 41971 36394 30071 27951 26994 26878 25598 24739

Table 8: M5 CT values for each method and retrain scenario combination.
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Method 1 2 3 4 6 8 10 13 26 52

Ens2A 1.472 1.479 1.480 1.453 1.444 1.443 1.447 1.431 1.428 1.430

Ens3A 1.517 1.520 1.504 1.462 1.451 1.435 1.450 1.429 1.429 1.430

Ens4A 1.524 1.528 1.515 1.472 1.461 1.445 1.459 1.436 1.435 1.436

Ens5A 1.544 1.543 1.541 1.495 1.484 1.468 1.480 1.459 1.459 1.455

Ens2T 5.719 5.687 5.778 5.701 5.671 5.696 5.639 5.708 5.797 5.939

Ens3T 5.536 5.492 5.556 5.400 5.326 5.369 5.112 5.246 5.497 5.782

Ens4T 4.472 4.426 4.643 4.296 4.256 4.310 4.162 4.159 4.412 4.659

Ens5T 3.672 3.615 3.807 3.513 3.481 3.523 3.410 3.406 3.603 3.798

Table 9: VN1 RMSSE values for each method and retrain scenario combination.

Method 1 2 3 4 6 8 10 13 26 52

Ens2A 2.369 2.371 2.370 2.326 2.343 2.358 2.356 2.360 2.405 2.467

Ens3A 2.410 2.399 2.399 2.338 2.335 2.353 2.351 2.362 2.411 2.459

Ens4A 2.386 2.399 2.376 2.326 2.341 2.355 2.349 2.344 2.402 2.440

Ens5A 2.375 2.371 2.383 2.318 2.334 2.341 2.357 2.346 2.405 2.446

Ens2T 2.545 2.551 2.575 2.576 2.594 2.601 2.601 2.608 2.660 2.694

Ens3T 2.588 2.582 2.652 2.595 2.613 2.634 2.617 2.591 2.660 2.725

Ens4T 2.419 2.431 2.473 2.439 2.440 2.466 2.463 2.446 2.532 2.572

Ens5T 2.339 2.335 2.355 2.341 2.361 2.380 2.391 2.380 2.456 2.492

Table 10: VN1 MQL values for each method and retrain scenario combination.
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Method 1 2 3 4 6 8 10 13 26 52

Ens2A 2205 1228 940 748 607 508 460 460 361 312

Ens3A 3456 1932 1477 1175 952 796 722 721 569 492

Ens4A 28318 14312 10192 7352 5307 3880 3183 3291 1831 1094

Ens5A 28849 14586 10391 7498 5414 3962 3252 3361 1876 1125

Ens2T 766 395 287 212 157 120 102 104 67 48

Ens3T 1572 807 574 419 306 229 192 197 118 79

Ens4T 2533 1341 983 747 571 452 394 398 277 217

Ens5T 3660 1980 1477 1141 893 724 641 652 477 392

Table 11: VN1 CT values for each method and retrain scenario combination.

Figure 11: M5 Friedman-Nemenyi test results based on RMSSE.
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Figure 12: VN1 Friedman-Nemenyi test results based on RMSSE.

Figure 13: M5 Friedman-Nemenyi test results based on MQL.
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Figure 14: VN1 Friedman-Nemenyi test results based on MQL.

Method 7 14 21 30 60 90 120 150 180 364

LR 390,732 208,499 150,791 112,547 69,132 52,131 48,474 46,678 38,937 33,151

XGBoost 529,679 281,358 200,778 151,635 88,200 69,495 60,082 60,155 48,189 39,861

LGBM 1,526,424 818,569 593,676 455,075 286,262 228,698 199,337 204,972 170,802 146,252

CatBoost 358,123 189,714 134,258 99,699 58,167 44,164 37,206 38,266 30,622 24,362

MLP 604,120 482,505 441,981 419,823 392,046 383,287 380,697 376,968 368,023 365,525

TCN 1,146,256 960,626 890,924 862,432 815,006 801,612 791,801 791,348 784,201 776,181

NBEATSx 729,263 561,105 514,166 466,683 425,593 411,232 400,953 401,352 393,673 387,058

NHITS 754,783 573,233 510,655 470,077 425,684 409,844 402,731 402,394 393,071 385,470

Average 754,922 509,451 429,654 379,746 320,011 300,058 290,160 290,267 278,440 269,733

Table 12: M5 estimated costs for each base method and retrain scenario combination (in $).
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Method 7 14 21 30 60 90 120 150 180 364

Ens2A 2,056,103 1,099,927 794,454 606,710 374,461 298,193 259,419 265,127 218,991 186,113

Ens3A 2,446,835 1,308,426 945,244 719,256 443,594 350,323 307,893 311,805 257,928 219,264

Ens4A 3,176,097 1,869,531 1,459,411 1,185,940 869,187 761,555 708,845 713,157 651,601 606,322

Ens5A 3,780,218 2,352,036 1,901,392 1,605,763 1,261,233 1,144,843 1,089,543 1,090,125 1,019,624 971,847

Ens2T 748,854 398,213 285,049 212,246 127,299 96,295 85,680 84,944 69,559 57,513

Ens3T 1,278,533 679,571 485,827 363,881 215,499 165,789 145,762 145,099 117,748 97,375

Ens4T 1,882,653 1,162,076 927,808 783,704 607,545 549,077 526,459 522,067 485,770 462,900

Ens5T 2,611,916 1,723,181 1,441,975 1,250,387 1,033,138 960,309 927,412 923,419 879,444 849,958

Average 2,247,651 1,324,120 1,030,144 840,985 616,494 540,797 506,376 506,967 462,583 431,411

Table 13: M5 estimated costs for each ensemble method and retrain scenario combination (in $).

Method 1 2 3 4 6 8 10 13 26 52

LR 15,234 7,839 5,731 4,292 3,205 2,508 2,140 2,190 1,463 1,099

RF 1,605,768 799,597 562,896 398,954 281,246 199,214 158,959 165,975 81,529 38,865

XGBoost 34,254 17,687 12,796 9,413 6,944 5,262 4,473 4,534 2,863 2,005

LGBM 505,304 260,721 186,904 138,460 101,775 76,738 65,013 66,335 40,721 27,701

CatBoost 52,021 26,594 18,515 13,366 9,611 7,022 5,798 5,977 3,311 2,023

MLP 62,102 34,489 26,431 21,149 17,121 14,391 13,027 13,015 10,255 8,891

LSTM 82,927 49,019 38,851 31,962 27,022 23,465 21,829 21,932 18,415 16,652

TCN 72,763 41,291 31,910 25,464 20,791 17,579 15,983 16,365 12,936 11,284

NBEATSx 80,337 44,837 34,283 27,179 22,057 18,387 16,686 16,702 13,085 11,277

NHITS 80,776 45,458 34,688 27,585 22,336 18,607 16,888 16,855 13,405 11,601

Average 259,149 132,753 95,301 69,782 51,211 38,317 32,080 32,988 19,798 13,140

Table 14: VN1 estimated costs for each base method and retrain scenario combination (in $).
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Method 1 2 3 4 6 8 10 13 26 52

Ens2A 142,439 79,326 60,714 48,328 39,177 32,778 29,713 29,717 23,340 20,167

Ens3A 223,214 124,784 95,402 75,913 61,513 51,385 46,602 46,572 36,745 31,769

Ens4A 1,828,982 924,381 658,299 474,867 342,760 250,599 205,561 212,547 118,274 70,634

Ens5A 1,863,237 942,068 671,095 484,280 349,703 255,861 210,033 217,080 121,137 72,638

Ens2T 49,488 25,526 18,527 13,705 10,149 7,769 6,613 6,724 4,327 3,103

Ens3T 101,509 52,120 37,042 27,071 19,760 14,792 12,410 12,700 7,637 5,126

Ens4T 163,611 86,609 63,473 48,220 36,880 29,183 25,437 25,715 17,892 14,017

Ens5T 236,374 127,900 95,383 73,684 57,671 46,762 41,420 42,080 30,828 25,301

Average 576,106 295,339 212,491 155,758 114,701 86,140 72,223 74,141 45,022 30,344

Table 15: VN1 estimated costs for each ensemble method and retrain scenario combination (in $).
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