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Abstract

We study a model encompassing economic, epidemiological and environmental
domains, which feature reciprocal interactions. The economy is described by an
overlapping generations model in which productivity and agents’ preferences are
affected by the epidemiological situation. The evolution of an epidemic is repre-
sented through a susceptible-infected-susceptible model, in which the disease spread
depends on the pollution level and can be reduced through the government ex-
penditure. The pollution level increases during the production process and can be
reduced by allocating resources to its abatement. Resources are collected through
the capital taxation and the regulator must decide how to share them between
healthcare and environmental protection. For the resulting model, we show the
possible existence of a unique steady state, either characterized by the presence
of epidemics or disease-free. We study its comparative statics depending on the
policy parameter regulating the share of resources that is devoted to improve the
epidemiological situation with respect to the environmental one. We investigate
the emergence of dynamics non convergent toward the equilibrium, with possible
complex and quasi-periodic trajectories.

Keywords: OLG model, Epidemiological and environmental domains, Dynamical
analysis, Bifurcations.

JEL Classification: C61 , O11 , Q56

1 Introduction

During the last decades it has become increasingly evident that limiting the study of eco-
nomic growth to the economic domain alone cannot provide a reliable setting to develop
effective policy measures. It is crucial to adopt an integrated approach, which allows
assessing the reciprocal influences of different domains. For example, the strong impact
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on economies of the latest pandemic highlighted the need of carefully planning suit-
able healthcare policies to prevent epidemic emergencies. Similarly, the environmental
degradation has both negative effects on the economic growth and on health situation.

Research started to tackle these challenges by developing modelling approaches that
investigate the effects of the interaction among different domains. The effect of consump-
tion on the evolution of the environmental quality was studied in the seminal work by by
John and Pecchenino (1994). Coupling an overlapping generations model (OLG) with an
equation describing the evolution of the environmental quality, they described how the
environmental quality is deteriorated by the consumption of the produced good. They
also showed that this effect can be counteracted if the young agents invest for environ-
mental maintenance. The improvements of environmental quality can be addressed also
from the public investment perspective, through taxation (Horan et al. (1998)) and/or
the promotion of environmental awareness (Constant and Davin (2019); Grassetti et al.
(2024)). The literature investigates the interrelation between economic and environmen-
tal domains both from macroeconomic (Wei and Aadland (2021); Menuet et al. (2023);
Cavalli et al. (2024a)) and microeconomic (Matsumoto and Szidarovszky (2020); Mat-
sumoto et al. (2022); Naimzada and Pireddu (2023)) perspectives, taking into account
dynamical aspects as well as the evolutionary approaches to green transition by Zeppini
(2015); Cavalli et al. (2024b). For further contributions we refer to the surveys by Brock
and Scott Taylor (2005)and Levin and Xepapadeas (2021). Similarly, it is evident that
an epidemic outbreak can have severe effects on the productivity, as well as, influencing
the agents expectations for the future, can affect the behavior of the agents. A first direct
effect is that infected agents may not be able to work, with a negative repercussion on
production and hence on economic growth. This was studied by Goenka and Liu (2012);
Bell and Gersbach (2013). Goenka and Liu (2019) reconsidered the problem with respect
to the risk of being locked in poverty traps. Other research strands have been devoted to
study effective policies to counteract the spread of diseases (Anderson et al. (2012)), in
particular through preventive measures, as Momota et al. (2005); Gori et al. (2021a,b).

The present contribution expands upon that in Cavalli et al. (2024c), where the
interaction between the economic and epidemiological sides was considered, and takes
inspiration from the work by Davin et al. (2022), in which the economic, epidemiological
and environmental spheres are simultaneously considered. In Davin et al. (2022) the
economic side is described by an OLG model. It is assumed that only healthy agents
are able to work, and their saving preferences for retired age are negatively affected by
the spread of epidemics. The epidemiological domain consists of a susceptible-infected-
susceptible (SIS) model, in which the contact rate can be mitigated by a suitable use of
resources collected from taxation. Moreover, the contact rate is negatively affected by the
pollution, which is quantified through the output level, considered a proxy measure of
the pollution level. Government can also issue a debt to provide subsidies for agents who
are unable to work as ill. The goal of Davin et al. (2022) is to study the effectiveness of
redistributive measures on the overall welfare of the population. One of the drawbacks of
the resulting model is the very stylized description of the environmental side. Inherently,
taxes can be used only for healthcare and no intervention to improve the environmental
quality is possible. Finally, the dynamical analysis of the model is quite limited.

The aim of the present research is to overcome the previous issues. First of all, the
model is enriched by a more detailed description of the dynamics of pollution, which is
emitted by firms during the production process and can be partially reduced through
natural absorption or by means of suitable investments in abatement. The regulator
can decide how to distribute collected resources between healthcare and environment.
The choice to privilege healthcare has a direct positive effect on the control of epidemic
spread, with consequent benefits on the economic side, but likewise has the disadvantage
to limit the pollution abatement, which in turn has a negative effect on the epidemio-
logical side. The converse occurs for the opposite choice. The proposed setting allows
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addressing the problem of developing a balanced policy that takes into account all these
reciprocal effects, without disregarding their dynamical consequences.

Firstly, we study a baseline model in which the government does not issue a debt and
does not provide subsidies for non working agents. After showing that, as in Davin et al.
(2022), a unique steady state characterized by epidemic exists together with a disease-
free steady state, we focus on the effects on stability of the parameter regulating the
distribution of resources between healthcare and environment. In particular, we show
that a flip bifurcation can occur if the investments on healthcare are too reduced, due to
instabilities arising from the epidemiological side. Conversely, a Neimark-Sacker bubbling
phenomenon can take place as resources for the pollution abatement are decreased, as a
consequence of instabilities arising in the environmental dynamics. We then show that
the outcomes for the baseline model are reliable to describe the results obtained when
debt and subsidies are taken into account.

The remainder of the manuscript is organized as follows. In Section 2 we present the
general model. We start studying the limit case without subsidies in Section 3, both from
the static and dynamical point of view. We then consider a particular case study for it
in Section 4, together with numerical investigations. The complete model with debt and
subsidies is investigated in Section 5. Conclusions and future research perspectives are
reported in Section 6. Proofs of propositions are collected in Appendix.

2 The model

The baseline model is built along the lines of what is proposed by Davin et al. (2022)
and consists of three interacting domains: epidemiological, economic, and environmental.
Before delving into the mathematical description of each domain, we briefly outline the
main constitutive elements. The evolution occurs in discrete time periods, t ∈ N.

The focus is on a population composed of overlapping generations of adult and elderly
agents, with each group having a constant size over time, normalized to 1. The fraction
st ≥ 0 of healthy adult agents works and supplies one unit of labor. Hence, the fraction it
of infected individuals amounts to 1−st. A healthy agent can become infected depending
on the characteristics of the epidemic, the environmental quality, and the government’s
healthcare policy.

At time t, healthy adult agents produce a homogeneous output yt, which can be
used for consumption or saved as capital kt. The preference for saving or consump-
tion is influenced by the epidemiological situation: the better the situation, the greater
the preference for saving, whereas the opposite occurs when the healthcare scenario
deteriorates.

The government taxes production and allocates a fraction ω ∈ [0, 1] of the collected
resources to healthcare, while the remaining fraction 1− ω is devoted to environmental
policies. Finally, the environmental situation is described by the evolution of the pollu-
tion stock pt, which is generated through the production process, naturally decays, and
is reduced through abatement policies funded by government resources.

In what follows, we provide details on how each domain is modelled.

The environmental sphere

The pollutant stock pt present in the environment at each time period evolves due to
three factors:

1. the production process emits pollutants at a constant rate α, which is proportional
to output yt.

2. pollution naturally decays at a constant rate δ ∈ (0, 1).
3. public environmental expenditures contribute to pollution abatement, with the

effectiveness of the abatement process measured by the constant λ > 0.
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This process is described by the equation:

pt+1 = max{(1− δ)pt + αyt − λ(1− ω)gt, 0}, (1)

where (1 − ω)gt represents the fraction of resources allocated by the government to
environmental improvement.

In modelling the environmental side, we depart from Davin et al. (2022), where
pollution is simply assumed to be equal to the output level.1 This approach allows us to
account for the dynamic evolution of pollution and its influence on other spheres.

Moreover, in Davin et al. (2022), taxation was solely used to improve the epidemio-
logical sector, whereas the introduction of equation (1) enables an investigation of the
trade-off in allocating resources between healthcare and environmental policies.

Finally, we note that a zero pollution level represents the so-called “virgin state”,
in which the environment is completely unpolluted. This occurs when abatement is so
effective that it eliminates all pollution. This also explains the use of the max function
in equation (1).

The epidemiological sphere

As in Davin et al. (2022), we assume that the epidemic follows a classic SIS model. In each
period, there are three generations of agents: children, adults, and retired individuals.
The population size for each generation remains constant over time and is equal to N .
When children come into contact with other generations, they can become susceptible
or infected upon reaching adulthood.2

The number of infected (respectively susceptible) adults and retired agents is the
same and is denoted by It (respectively St). Thus, at each time t, we have 2N =
2It+2St, from which we define the fractions st = St/N and it = It/N , representing the
proportions of susceptible and infected agents, respectively. Since the entire adult and
retired population is either susceptible or infected, it follows that it + st = 1.

The infection rate θ depends on healthcare policies and the environmental situation.
Specifically, it is modelled as a decreasing function θ : [0,+∞) → (0,+∞) that depends
on the ratio ωgt/pt, where ωgt represents the portion of tax revenue allocated to public
healthcare. A higher value of this ratio leads to a lower infection (or contact) rate θ,
slowing the spread of the disease. Conversely, the inverse dependence on the pollution
stock pt reflects the worsening health conditions as environmental pollution increases.

The resulting SIS model is given by
st+1 = st

(
1− θ

(
ωgt
pt

)
it

)
+ γit

it+1 = (1− γ)it + θitst
s0, i0 > 0, s0 + i0 = 1.

(2)

where 0 < γ ≤ 1 is the recovery rate.

To ensure the positivity of the trajectories, we impose the condition θ
(

ωgt
pt

)
∈(

0,
(
1 +

√
γ
)2)

(see Allen (1994)). Finally, we note that only one of the two equations

in (2) is needed to model the evolution of the epidemic. Therefore, in what follows, we
focus on the equation describing the dynamics of st, from which the number of infected
agents can be obtained using it = 1− st.

1More precisely, it corresponds to yt+1. Unlike Davin et al. (2022), we assume that emissions are proportional
to yt. The resulting pollution dynamics in equation (1) align with the related existing literature (see, e.g.,
Cavalli et al. (2024a) and the references therein).

2For more details, we refer the interested reader to Section 2.2 in Davin et al. (2022).
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The economic sphere

The economy is described by an OLG model with production, along the lines of that in
Davin et al. (2022). The main difference from the model in Davin et al. (2022) lies in the
alternative characterization of public intervention, following the framework in Cavalli
et al. (2024c).

Every adult i ∈ {1, . . . , N} decides how to allocate consumption between adulthood
ci,t and retirement di,t+1 by solving the following maximization problem

maxci,t,di,t+1 u(ci,t, di,t+1) = maxci,t,di,t+1
(ln ci,t + β(st) ln di,t+1)

subject to
σi,t + ci,t = Ωi,t + τi,t
di,t+1 = rt+1

β(st)
σi,t

(3)

where function u(ci,t, di,t+1) captures the preferences of agent i and β : [0, 1] → (0, 1]
the survival probability, which in turn influences the willingness to save for old age.
Function β is increasing (β′(x) ≥ 0 for any x ∈ [0, 1]) and concave3. Utility is maximized
subject to the budget constraints given by the last two conditions in (3). Moreover, in
the former constraint in (3), Ωi,t represents the labour income while τi,t is the subsidy
paid by the government. If adult agent i is able to work, we have Ωi,t = wt > 0 and
τi,t = 0. Conversely, if adult agent i is unable to work and hence Ωi,t = 0, we assume
that the government supplies an amount τi,t > 0, which represents a subsidy and can
be interpreted as a health insurance or a paid sick leave. The labour/subsidy income is
split between savings σi,t and consumption ci,t, while the latter constraint expresses the
relationship between savings at period t and the consumption at period t+1. Specifically,
future consumption is directly proportional to the marginal productivity of capital rt+1

and inversely proportional to the survival probability.
Solving (3) provides

ci,t =
1

1 + β(st)
(Ωi,t + τi,t), σi,t =

β(st)

1 + β(st)
(Ωi,t + τi,t), di,t+1 =

rt+1

1 + β(st)
(Ωi,t + τi,t).

We assume for firms the neoclassical production function with constant return to scale

Yt(Lt,Kt) = A(st)L
1−a
t Ka

t ,

where factor inputs Lt and Kt are respectively the labour and the capital, a ∈ (0, 1),
and increasing function A : [0, 1] → (0, 1] represents the normalized productivity factor.
The per capita production function is obtained as

yt(lt, kt) = A(st)l
1−a
t kat ,

where factor inputs lt and kt are respectively the labour and the capital per capita. In
line with Davin et al. (2022), we assume that only healthy adult agents work, so lt = st,
and that productivity is increasing with respect to the fraction of healthy people4. If the
whole adult population is healthy, we assume A(1) = 1.

Total factor productivity (TFP) changes with respect to the number of workers, as
discussed in Davin et al. (2022) and its references. However, the relationship between
A and st is complex and difficult to estimate accurately, as it involves the impact of

3Unlike the present model, in Davin et al. (2022) the utility function depends on β(st+1). This would imply
that agents anticipate the future evolution of the epidemic when making decisions.In contrast, we assume a
more realistic scenario where agents only observe the current epidemic situation and base their consumption
and saving choices on that The constraint regarding di,t+1 is changed accordingly.

4We note that, like in Davin et al. (2022), in (3) we do not take into account a direct negative effect of
pollution on productivity. This aspect is left to future developments of the model.
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changes in human capital on TFP5. Firms can consequently face uncertainty when trying
to approximate it, so we assume that firms can accurately estimate TFP but are unable
to estimate marginal TFP. Therefore, for small variations in st, firms treat TFP as
constant, and we adopt the same framework as Cavalli et al. (2024c). Note that the
explicit expressions for function A(st) used in Davin et al. (2022); Cavalli et al. (2024c)
and in the present work exhibits constant behavior over certain ranges.

The government charges taxes on the firms at a rate τ ∈ [0, 1], which is assumed
exogenous and constant in time. The maximization of firm profits, which correspond to

π(st, kt) = (1− τ)yt(st, kt)− rtkt − wtst,

provides the marginal productivity of capital and the wage6

rt = (1− τ)aA(st)

(
st
kt

)1−a

, wt = (1− τ)(1− a)A(st)

(
st
kt

)−a

Now we detail the modelling of the subsidy. It is reasonable to link its amount to the
economic performance. For this reason, we consider a constant, basic level of subsidy,
described by an exogenous parameter τex > 0, which is integrated by an amount corre-
sponding to a fraction of the resources obtained from taxation. This latter contribution
is described by τendYt, in which 0 ≤ τend < τ, and the goal is to provide the frac-
tion τendYt/N to each infected adult, with an overall expenditure that then amounts
to τendYtIt/N = τendYtit. For each infected agent the government allocates a subsidy
equal to τex + τendYt/N .

If we take into account the possibility to issue a time constant debt b > τex the
government budget constraint can be written as

Bt+1 + τYt = rtBt +Gt + τexIt + τendYtit,

where rtBt corresponds to the interest on public debt andGt are the public expenditures.
We can obtain the residual resources gt, net of subsidies, that the government can allocate
to healthcare and environment as

gt = b(1− rt) + τyt − τex(1− st)− τendyt(1− st), (4)

which corresponds to gt = b(1−rt)+τA(st)s
1−a
t kat −τex(1−st)−τendA(st)s

1−a
t kat (1−st).

Finally, the intertemporal equilibrium condition becomes kt+1 + b =
∑N

i=1 σi,t/N,
from which we obtain

kt+1 =
β(st)

1 + β(st)

[
(1− τ)(1− a)A(st)s

1−a
t kat

+τex(1− st) + τendA(st)s
1−a
t kat (1− st)

]
− b

(5)

We note that β(st)/(1+β(st)) represents the saving propensity (see Chakraborty (2004)).
Finally, in the remainder of the paper, we assume that functions θ, β and A are suffi-
ciently regular to be able to compute all the involved derivatives. For this, since up to
third order derivatives are involved, it is sufficient to have θ, β,A ∈ C3, at least almost
everywhere on their domains.

5Although the effect of human capital on TFP is well-established (see, e.g., Miller and Upadhyay (2000)), it
is hardly realistic to assume that firms have precise knowledge of how changes in human capital affect TFP. A
variation of st determines in turn a change in the human capital of the workforce, and hence it influences TFP
through alterations in the stock of knowledge and skills, social interactions, and individual capabilities. For
an investigation on the methods used to measure the impact of human capital on TFP, we refer to Männasoo
et al. (2018), which also outlines the challenges in this process.

6Accordingly to the assumption of the knowledge of A(st) by firms, we have that they act as if A′(st) = 0.
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3 Analysis of the baseline model without subsidies

We study the static and dynamical properties of the model in which τex = τend = b = 0.
This represents the limit situation in which infected agents, who are not able to work, do
not have any income during the second period of their life. The reason for which we start
focusing on this scenario is related to the analytical tractability of the resulting model.
Moreover, in Section 5 we reconsider the model by taking into account government debt
and subsidies, showing that the outcomes found for the baseline model still hold true
for the improved one.

The resulting model is described by function M : [0, 1] × [0,+∞) × [0,+∞) →
[0, 1] × [0,+∞) × [0,+∞), ξt = (st, pt, kt) 7→ M(st, pt, kt) defined by means of the first
equation in (2) (in which it is replaced by 1− st), and equations (5) and (1), so that we
have 

st+1 = M1(ξt) = st

[
1− θ

(
ωgt
pt

)
(1− st)

]
+ γ(1− st)

kt+1 = M2(ξt) =
β(st)

1+β(st)
(1− τ)(1− a)A(st)s

1−a
t kat

pt+1 = M3(ξt) = (1− δ)pt + αA(st)s
1−a
t kat − λ(1− ω)gt

(6)

in which we introduced functions Mi, i = 1, 2, 3 to represent each component of
M(st, pt, kt). We note that even if the dynamics of the stock of pollution can become
null, we avoid to focus on this case, studying situations characterized by pt > 0. The
reason is that the occurrence of the virgin state is quite unrealistic, and would presume
quite extreme conditions to realize. In what follows, we will analytically take into ac-
count the pollution positivity in the steady state investigation, while from the dynamical
point of view we will keep track of pt > 0 in the numerical simulations. Finally note that
if pt > 0, the argument of function θ is well-defined.

3.1 Static analysis

In this section we study the possible steady states ξ∗ = (s∗, p∗, k∗) of (6) and how they
change with respect to the most relevant parameters of the model. Consistently with the
possible steady states of the SIS model, we speak of endemic steady state if s∗ > 0 and
of disease-free steady state if s∗ = 1. We avoid to discuss steady states characterized by
null capital level, since they are economically irrelevant.

To formulate the results, in what follows we make use of

η =
ωg

p
=

ωτA(s)s1−aka

p
(7)

which, as in Davin et al. (2022), represents the relative government expenditure for
healthcare with respect to the pollution level. Moreover, we define

η∗ =
δωτ

α− λ(1− ω)τ
. (8)

Proposition 1 Model (6) always has a disease-free steady state ξ∗df = (s∗df , p
∗
df , k

∗
df )

s∗df = 1,

k∗df =
[
(1− τ)(1− a)

β(1)
1+β(1)

] 1
1−α

,

p∗df =
α−λ(1−ω)τ

δ (k∗df )
a.

provided that
α− λ(1− ω)τ > 0. (9)
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If θ (η∗) > γ and if (9) holds, there exists a unique endemic steady state ξ∗ = (s∗, p∗, k∗)
with positive components at which

s∗ = γ
θ(η∗)

,

k∗ =
[
(1− τ)(1− a)

β(s∗)
1+β(s∗)

A(s∗)
] 1

1−a
s∗,

p∗ =
α−λ(1−ω)τ

δ A(s∗)(s∗)1−a(k∗)a.

(10)

If θ (η∗) ≤ γ, no endemic steady state exists.

Note that η∗ in (8) actually corresponds to the value of (7) when the system is at
an endemic steady state.

The disease-free steady state always exists in case (9) holds, and can coexist with a
unique endemic steady state. We note that the result of Proposition 1 is in line with that
obtained by Davin et al. (2022), while much more complicated steady state scenarios can
arise in the simplified setting studied by Cavalli et al. (2024c), in which the environmental
side was not considered. The motivation of this can be ascribed to the influence of the
pollution level on the contact rate, in particular to the same specific way it is described
in both (6) and by Davin et al. (2022). The effect is to eliminate the possibility to have
more than one single endemic steady state7. The existence of the endemic steady state
is guaranteed under two conditions. The former one, θ (η∗) > γ, is a generalization of
the similar requirement in the classic SIS model, while the latter one, α−λ(1−ω)τ > 0,
allows preserving the positivity of p∗.

Since the focus of the present research is on the role of the policy parameter ω, we
restrict to situations in which we can study its behavior on its whole range of values.
For this reason, in what follows we always assume that (9) holds true for any ω ∈ [0, 1],
which requires α > λτ. We note that this condition is automatically fulfilled if α > λ,
which is an agreeable and realistic setting, since it means that the rate of abatement is
smaller than the emission rate. So we make the following assumption

Assumption 1 The rate of abatement is smaller than the rate of emission of new pollutant, i.e.
α > λ.

From now on, all the results are presented and proved under Assumption 1.
In the next proposition we study comparative statics of ξ∗. To this end, let us define

g∗ : [0, 1] → [0, 1] as

g∗(s) = τ(A(s))
1

1−a

(
(1− τ)(1− a)

β(s)

1 + β(s)

) a
1−a

s (11)

which represents the government expenditure when the economic domain is at the steady
state k∗ depending on an exogenous fraction s of susceptible agents8. In what follows,
for a given function f depending on a variable x we denote by Ef (x) the elasticity of f
at x. Let us introduce function Eθ(g), defined where θ is differentiable and representing
the elasticity of θ at g, i.e.

Eθ(g) =
gθ′(g)

θ(g)
.

7In particular, by simulative investigations, the endemic steady states that were observed in the economic-
epidemiological model in Cavalli et al. (2024c) and that are ruled out when the environmental side is considered
are those characterized by higher levels of susceptible agents. The effect of pollution on the epidemic spread
is then to select the least desirable one.

8Expression (11) can be obtained by replacing in (4) the equilibrium expression of k for a generic s (see the
second equation in (10) or (A2)).
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In the suitable domain, we can also define

E β
1+β

(s) =
s
(

β(s)
1+β(s)

)′

β(s)
1+β(s)

=
sβ′(s)

β(s)(β(s) + 1)
, EA(s) =

sA′(s)

A(s)
,

respectively representing the elasticity of the saving propensity and of the total factor
productivity with respect to the fraction of susceptible agents. Similarly, function Eg∗(s),
defined where g∗ is differentiable and representing the elasticity of g∗ at s, can be written

Eg∗(s) =
sg∗′(s)

g∗(s)
=

a

1− a

β′(s)

sβ(s)(1 + β(s))
+

1

1− a

sA′(s)

A(s)
+ 1

=
a

1− a
E β

1+β
(s) +

1

1− a
EA(s) + 1

(12)

We remark that since θ is strictly decreasing, we have Eθ(g) < 0 for g > 0, while since
both β and A are non decreasing, we have Eg∗(s) ≥ 1.

Proposition 2 Let us consider the endemic steady state ξ∗ = (s∗, p∗, k∗). Under Assumption
1, on increasing ω, we have that s∗, k∗ and p∗ increase.

The main outcome of Proposition 2 is that, in the present setting, by moving resources
from environmental protection to healthcare necessarily induces a deterioration of the
environmental quality for an improvement of the epidemiological situation and of the
economic growth. This latter aspect is an effect of the direct negative influence of the
disease spread on the productivity. As a consequence, balanced welfare concerns should
bear in mind the trade-off effects of the distribution of resources.

3.2 Dynamical analysis

We recall (see e.g. Allen (1994)) that in the SIS model with exogenous contact rate the
endemic steady state is locally asymptotically stable provided that θ− γ < 2. Similarly,
if s and k are assumed exogenous in the dynamical equation for the pollution, the unique
steady state is always locally asymptotically stable.

Concerning the stability of the disease-free steady state we have the following result,
which basically confirms what happens in the SIS model.

Proposition 3 Let γ > θ(η∗) so that the endemic steady state ξ∗ = (s∗, p∗, k∗) does not exist.
We then have that ξ∗df is locally asymptotically stable.

We remark that when conversely the endemic steady state exists, ξ∗df is unstable.
Now we turn our attention to the stability of the endemic steady state. We note that if
the endemic steady state exists for ω = 0 (i.e. if γ < θ(0)), since as ω increases, we have
that η∗ increases and hence θ(η∗) decreases, so condition γ < θ(η∗) may be violated
for suitably large ω. This leads to the disappearance of ξ∗ (which actually becomes
unfeasible, with s∗ ≥ 1) and ξ∗df becomes stable. This behavior actually recalls that of
a transcritical bifurcation, which will be confirmed by the numerical simulations of the
next sections.
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Proposition 4 Let γ < θ(η∗) so that the endemic steady state ξ∗ = (s∗, p∗, k∗) exists. Under
Assumption 1, we have that ξ∗ is locally asymptotically stable provided that

c11(θ(η
∗)− γ) + c10 > 0

c22(θ(η
∗)− γ)2 + c21(θ(η

∗)− γ) + c20 > 0
c31(θ(η

∗)− γ) + c30 > 0

(13)

where

c11 = − (a+ 1)(2− δ)− 2Eθ(η
∗)

(
Eg∗

(
γ

θ(η∗)

)
(1− a)− 2aEβ/1+β

(
γ

θ(η∗)

))
,

c10 = 2(a+ 1)(2− δ),

c22 = a

(
1− δ − Eθ(η

∗)Eβ/1+β

(
γ

θ(η∗)

))(
aδ + 1− a+ (1− a)Eθ(η

∗)Eg∗

(
γ

θ(η∗)

))
c21 = (1− a)Eθ(η

∗)

(
(1− a+ aδ)Eg∗

(
γ

θ(η∗)

)
− aδEβ/1+β

(
γ

θ(η∗)

))
+ 4aδ − δ − 2a− aδ2 − 3a2δ + a2 + 2a2δ2 + 1

c20 = δ(1− a)(aδ + 1− a),

c31 = 1 + a− δ + (1− a)Eθ(η
∗)

(
Eg∗

(
γ

θ(η∗)

)
− 2a

1− a
Eβ/1+β

(
γ

θ(η∗)

))
,

c30 = 3− (1 + a)(1− δ)− a.

A flip bifurcation can occur only when the first condition in (13) is violated, while a Neimark-
Sacker bifurcation can occur only when the second condition in (13) is violated.

The expressions of stability conditions (13) are very convoluted, as the involved
coefficients cij can depend on η∗ and it is not possible to make explicit the role of each
parameter, in particular of ω. However, some remarks are possible. Firstly, we recall
that the last condition in (13) is not involved in the possible emergence of bifurcations,
so we avoid to take it into account it (see e.g. Lines et al. (2020), in which an equivalent
formulation of this condition is considered).

A key point is that, as ω changes, the main source of a potential bifurcation is
the change in the contact rate θ(η∗). This may suggest that, in the present setting,
instabilities arise from the epidemiological side and are then transmitted to the other
domains. This can be directly ascribed to the presence of the environmental side.9 Let
us focus on the first condition in (13). The role of the contact rate θ(η∗) can be amplified
or damped by its elasticity and that of the government expenditure and of the saving
propensity. Let us assume constant total factor productivity and survival probability.
If we consider an exogenous contact rate, we find the same stability condition related
to the SIS model. If θ is endogenous, θ(η∗) − γ decreases as ω increases. In the case of
an isoelastic contact rate10 we have that c11 is constant and increasing ω we can have
that the first condition in (13) is either always/never fulfilled or it becomes true for
sufficiently large ω, which is then stabilizing. Indeed, this behavior may be altered in
the case of general contact rate functions or by endogenous A and β.

Similarly, the second condition in (13) seems to suggest that ω can lead to a double
stability change for the endemic steady state11 even if also in this case the role of
coefficients c22 and c21 may alter the occurrence of this scenario. Finally, we note that for
θ(η∗)−γ = 0, both conditions in (13) are fulfilled, and this guarantees that the endemic
steady state must become stable as it sufficiently approaches the disease free one. This

9In studying dynamical properties, Davin et al. (2022) imposed restrictive conditions in order to obtain
stable steady states, since their goal is to focus on this situation. For this reason, and for the introduction
in the present contribution of a detailed description of the environmental side, it is awkward to compare the
dynamical outcomes of the two models.

10Due to the upper bound on the contact rate to preserve the positivity of trajectories, function θ can be
isoelastic just for η∗ > η̄ with θ(η̄) < (1 +

√
γ)2. However, it is possible to consider a piecewise isoelastic

contact rate θ(η) = min{θ0, θ0/ηξ}, to which we can apply the next discussion.
11For example by considering the same setting sketched for the first stability condition, with isoelastic θ

and exogenous A and β.
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means that if θ(η∗) − γ = 0 occurs for some ωtr ∈ (0, 1), we have that ξ∗ is stable
on a left neighborhood of ωtr. In the next sections, we look for simplified settings that
provide sufficient conditions on the endogenous elements of the model for the occurrence
of at most one stability change (respectively two stability changes) arising from the first
(respectively second) condition in (13). To this end we will deal with a case of study, in
view of which we reformulate Proposition 4 for scenarios of increasing complexity.

4 Case study with increasing complexity

In this section we examine stability by subsequently introducing one by one the en-
dogenous effects. The goal is to obtain specialized versions of Proposition 4 that allow
investigating the role of each sphere in being the source of instabilities. Moreover, for
each framework, we provide sufficient conditions for which the arising scenarios are those
discussed after Proposition 4.

4.1 Endogenous θ

When A and β are constant, conditions (13) simplify as follows. Since the calculations
are straightforward, we do not provide a proof.

Corollary 5 Under Assumption 1, if A(s) ≡ A and β(s) ≡ β and γ < θ(η∗) conditions (13)
become 

Eθ(η
∗) <

(a+ 1)(2− δ)[2− (θ(η∗)− γ)]

2(1− a)(θ(η∗)− γ)

Eθ(η
∗) > − (1− a+ aδ)[1− a+ a(θ(η∗)− γ)][δ + (1− δ)(θ(η∗)− γ)]

(θ(η∗)− γ)(1− a)[1− a(1− δ) + a(1− δ)(θ(η∗)− γ)]

Eθ(η
∗) >

(1 + a)(1− δ) + a− 3− (1 + a− δ)(θ(η∗)− γ)

(1− a)(θ(η∗)− γ)

(14)

We remark that, since total factor productivity does not depend on st, the marginal
total factor productivity is null, as assumed by the firms, and therefore this case of
study is not affected by such an element of uncertainty. Note that the right hand side
of the first condition in (14) is positive when θ(η∗) − γ < 2, which corresponds to the
stability conditions of the endemic steady state in the SIS model, while the left hand
side is negative. This means that when the endemic state is stable in an SIS model
characterized by a contact rate θ0 = θ(0), the first condition in (14) is fulfilled for any
ω. However, since the right hand side in the second inequality in (14) is negative, the
stability condition related to the emergence of a Neimark-Sacker can be violated also
when the epidemiological sphere is not source of instabilities. Depending on θ, many
different scenarios can arise when (14) is violated. A simple situation is described in the
next proposition. In what follows, we denote bifurcation thresholds for ω of potential
transcritical, flip and Neimark-Sacker bifurcations by subscripts tr, f and ns.

Proposition 6 If θ′(η) ̸= 0, E′
θ(η) < 0 and

E′′
θ (η) > E′

θ(η)

(
θ′′(η)
θ′(η)

− 2θ′(η)
θ(η)− γ

)
, (15)

then we have that depending on the parameters defining the model and function θ, the endemic
steady state ξ∗ for ω ∈ [0, ωtr] ∩ [0, 1] can incur

� at most one period halving bifurcation at ωf ;
� at most a couple of Neimark-Sacker bifurcations at ω1,ns, ω2,ns.

Different sequences of bifurcations are possible, and, increasing ω, are characterized by a recover
of stability at ωf and ω2,ns, and a loss of stability at ω1,ns.

11



From Proposition 6, we have that if at the equilibrium the elasticity of the con-
tact rate with respect to the relative government expenditure is decreasing and “not
too concave”, we can have up to three stability inversions for ξ∗, with a possible final
transcritical bifurcation. We note that ωtr is the threshold at which the endemic steady
state can disappear and disease free steady state can become stable; ωf is the threshold
value at which a period-halving bifurcation can take place, while we can have up to two
Neimark-Sacker bifurcations at ω1,ns and ω2,ns.

To help in the discussion of these scenarios, we also rely on numerical simulations.
To this end we introduce

θ(η) = θ0e
−θ1η

θ2
, (16)

where θ0, θ2 > 0 and θ1 ≥ 0. We note that setting θ1 = 0 we have an exogenous contact
rate θ0, which we consider as a limit case. In what follows we focus on θ1 > 0, in which
case θ0 represents the maximum possible contact rate, occurring when the government
expenditure is null. Parameters θ1 and θ2 determine the steepness and concavity of
function θ. Function (16) fulfills the requirements of Proposition 6, as shown in the next
corollary.

Corollary 7 Let θ be defined by (16). For η ∈
(
0,min

{
δτ
α , θ−1{γ}

})
, we have that Eθ(η) is

strictly decreasing and fulfills condition (15).

We start investigating the occurrence of all the possible12 scenarios arising from
Proposition 6 by means of numerical investigations using function (16). In what follows,
we set A = 1, β = 1, θ1 = 1, a = 0.3, γ = 0.999, α = 0.1, δ = 0.3 and λ = 0.075.
In Figure 1 we report in the first row the two dimensional bifurcation diagrams in
(ω, τ) plane. The color of each point depends on the cardinality of the attractor reached
with the corresponding parameter combination. In particular, white color is used for
convergence toward the steady state, blue color highlights the occurrence of a period-2
cycle and so on, with cyan color that points out either a very large period cycle or quasi-
periodic/chaotic dynamics. Crossing the dashed black line in the upper right parts of the
panels, ξ∗ disappears and ξ∗df becomes stable, and hence in white regions to its left and
below it the trajectories converge to ξ∗, while otherwise convergence is toward ξ∗df . Below
each two dimensional bifurcation diagram we report three examples of one dimensional
bifurcation diagrams related to it, obtained for different values of τ on increasing ω.

The simulations reported in the first column of Figure 1 are obtained for a large θ0,
such that the endemic steady state is unstable for an isolated SIS model characterized
by such a contact rate. We note that numerical evidence from the simulations indicates
that the first condition in (14) is violated for small values of τ and ω, whereas the
second condition is satisfied for all ω ∈ [0, 1]. The arising scenarios are in line with those
occurring in an isolated SIS model, and exhibit a stabilizing role for taxation, according
to what has been shown by Cavalli et al. (2024c). Similarly, ω is stabilizing as well. For
small taxation rates we have that ξ∗ is unstable for any ω ∈ [0, 1] (panel (d)), while as τ
increases it is possible to stabilize dynamics if the share of resources devoted to healthcare
is suitably large (panel (g)), and even recover the disease-free steady state (panel (j)).
Note that the bifurcation diagram in Figure 1 (j) provides a numerical evidence of a
transcritical bifurcation occurring for ω = ωtr the endemic steady state merges and swaps
its stability with the disease-free one. This is confirmed also by several other bifurcation
diagrams, both in Figure 1 and in subsequent figures. In the simulations reported in the
first column of Figure 1 the interaction with the environmental side does not introduce
new scenarios with respect to those observed in an SIS model or in Cavalli et al. (2024c).

12Among the possible combinations, those in which ω1,ns = 0 or 0 < ω1,ns < ωf < ω2,ns or 0 < ω1,ns <
ω2,ns < ωf seem not to be possible, but they would provide scenarios characterized by degrees of complexity
qualitatively similar to others that occur.
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θ0 = 3.9, θ2 = 1

(a)

θ0 = 2.9, θ2 = 3

(b)

θ0 = 3.9, θ2 = 3

(c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1 Endogenous θ, exogenous A and β. First row: two dimensional bifurcation diagrams
in (ω, τ) plane for different values of θ0 and θ2. For different values of τ, the one dimensional
bifurcation diagrams, on varying ω, in each column are related to the two dimensional bifurca-
tion diagram in the first row. The black (resp. blue and red) bifurcation diagram is related to
variable k (resp. p and s), and refers to the left (resp. left and right) vertical axis of each panel.

Conversely, in panel (b) of Figure 1 we consider a setting for which the first condi-
tion in (13) is fulfilled for any ω ∈ [0, 1]. Note that θ0 is small, so the endemic steady
state is stable for the classic SIS model with contact rate θ0, which is the rate obtained
in the present model with τ = 0. For small taxation rates, we have that ξ∗ is stable for
any ω ∈ [0, 1], while as τ increases, ξ∗ becomes firstly unstable for large ω (panel (e)),
then it is unstable for intermediate ω, with stability that is recovered for suitably large
values of ω (panel (h)). Also in this case the disease-free steady state can become stable
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Figure 2 Time series related to the simulation reported in Figure 1 (h) for different values of ω.

if τ and ω are sufficiently large (panel (k)). In all these cases, ξ∗ loses/recovers stability
through Neimark-Sacker bifurcations. We remark that the SIS equation is not a source
of instability, as the contact rate is small. The three domains, when separately consid-
ered, would just provide stable dynamics. Conversely, when coupled, we can observe the
emergence of quasi-periodic trajectories.

The rationale can be explained by observing the quasi-periodic time series reported
in Figure 2, obtained for different values of ω corresponding to values respectively be-
fore, belonging to and after the instability interval. In all the reported simulations the
epidemic is initially at its maximum spread, and this reflects on a depressed capital level
(the number of workers is low) and a consequent reduced pollution level (production
is low). If ω is small, the government expenditures for healthcare are able to initially
counteract the epidemic diffusion, and the number of healthy agents starts increasing,
reviving the economic course and, consequently, deteriorating the environmental situa-
tion. However, the raise of pollution has a negative effect on the contact rate, and this is
not counterbalanced by the effect of investments on healthcare, and the epidemic prolif-
erates again, even if reaching a smaller diffusion. The sequence of effects on st, kt and pt
repeats, but giving rise to increasingly less extreme situations, which leads to damped
oscillations and convergence toward the endemic steady state characterized by a rele-
vant number of infected agents, even if the pollution level is small. In this setting, the
negative effect of pollution on the epidemiological situation is stronger than the positive
outcome of healthcare expenditure. If we increase ω, we obtain a scenario in which these
two effects, on average, balance out, so we have persistent, large oscillations. When the
epidemiological and economic situations are good, the large pollution level drives the
scenario toward the opposite state. The epidemiological and economic domains reach the
bottom situation, from which they come out thanks to the healthcare expenditures and
the improved environmental situation. If ω is further increased, the healthcare policy is
suitably effective to counterbalance the larger persistent pollution level, so oscillations
again dampen, now settling to an endemic steady state characterized by a small fraction
of infected people but a large pollution level.

In panel (c) of Figure 1 we consider a setting for which both conditions in (13) can be
violated, and what we observe can be thought of as the superposition of what happens in
panels (a) and (c). Since θ0 is large, the endemic steady state is unstable for the SIS model
if the contact rate is θ0. So ξ∗ is unstable when τ = 0 and for small taxation rates for any
ω ∈ [0, 1], while as τ mildly increases, ξ∗ can recover stability for large values of ω. If τ
is further increased, we have the superimposition of a couple of destabilizing/stabilizing
Neimark-Sacker bifurcations like those observed in the middle column of Figure 1. In
this case ξ∗ can have two (panel (f)) or three (panel (i)) stability changes (in addition
to the final transcritical bifurcation), with different kinds of bifurcations occurring. If τ
and ω are large enough, the disease-free steady state can recover stability (panel (l)).

We remark that, differently from the results in Cavalli et al. (2024c), taxation can
have a destabilizing effect.
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4.2 Endogenous θ and A

Now we take into account the effect of the epidemic spread on productivity, leaving β
as the only exogenous term. In this case, it is immediate to see that conditions (13)
simplify as follows.

Corollary 8 If β(s) ≡ β and γ < θ(η∗) conditions (13) become
Eθ(η

∗)
(
1 + 1

1−aEA

(
γ

θ(η∗)

))
<

(a+1)(2−δ)[2−(θ(η∗)−γ)]
2(1−a)(θ(η∗)−γ)

Eθ(η
∗)

(
1 + 1

1−aEA

(
γ

θ(η∗)

))
> − (1−a+aδ)[1−a+a(θ(η∗)−γ)][δ+(1−δ)(θ(η∗)−γ)]

(θ(η∗)−γ)(1−a)[1−a(1−δ)(1−(θ(η∗)−γ))]

Eθ(η
∗)

(
1 + 1

1−aEA

(
γ

θ(η∗)

))
>

(1+a)(1−δ)+a−3−(1+a−δ)(θ(η∗)−γ)
(1−a)(θ(η∗)−γ)

(17)

Also in this case the first condition in (17) is fulfilled when θ(η∗) − γ < 2, and the
comments after Corollary 5 are still valid. Since A has positive elasticity, ceteris paribus,
it has a stabilizing effect. This is predictable and in line with the outcomes in Cavalli
et al. (2024c), as it points out a more reactive effect of a decrease of the fraction of
infected agents on the productivity. The opposite occurs for the second condition in (17),
with the elasticity of A having a destabilizing effect. If the productivity more quickly
reacts to a reduction of the infection spread, this corresponds to an increase of pollution,
and recalling the discussion in the previous section, this has a destabilizing effect. Now
we provide sufficient conditions on EA to obtain a result similar to that in Proposition 6.

In what follows, we denote by
(
EA

(
γ

θ(η)

))′
and

(
EA

(
γ

θ(η)

))′′
respectively the

first and the second derivative of EA

(
γ

θ(η)

)
with respect to η, i.e. dEA(γ/θ(η))

dη and

d2EA(γ/θ(η))
dη2 .

Proposition 9 If θ′(η) ̸= 0, E′
θ(η) < 0,

(
EA

(
γ

θ(η)

))′
> 0 and

E′′
θ (η) >

(
θ′′(η)
θ′(η)

− 2θ′(η)
θ(η)− γ

)
E′
θ(η)− 2E′

θ(η)

(
EA

(
γ

θ(η)

))′

EA

(
γ

θ(η)

) (18)

and (
EA

(
γ

θ(η)

))′′
<

(
−2θ′(η)
θ(η)− γ

+
θ′′(η)
θ′(η)

)(
EA

(
γ

θ(η)

))′
(19)

We then have that the possible bifurcations are the same as those in Proposition 6.

For the numerical simulations we introduce function

A(s) = max

{
min

{
Am +

1−Am

A1 −A0
(s−A0), 1

}
, Am

}
(20)

with 0 ≤ A0 < A1 ≤ 1 and Am ∈ [0, 1). With function (20) the total factor productivity
equals the smallest possible Am for s ≤ A0, is linearly increasing on (A0, A1) and attains
its maximum value 1 for s ≥ A1. We study under what conditions on the parameters of
function θ defined by (16) and on the restriction to (A0, A1) of function A the previous
proposition can be applied.

Corollary 10 Let θ be defined by (16) and A by (20). For η ∈
(
0,min

{
δτ
α , θ−1{γ}

})
∩(

θ−1
(

γ
A0

)
, θ−1

(
γ
A1

))
and if {

A1Am −A0 > 0

A0 >
1

3

(21)
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conditions of Proposition 9 hold true and so the possible bifurcations are the same as those in
Proposition 6.

θ0 = 3.9, θ2 = 1

(a)

θ0 = 2.9, θ2 = 3

(b)

θ0 = 3.9, θ2 = 3

(c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3 Endogenous θ, and A, exogenous β. First row: two dimensional bifurcation diagrams
in (ω, τ) plane for different values of θ0 and θ2. For different values of τ, the one dimensional
bifurcation diagrams, on varying ω, in each column are related to the two dimensional bifurca-
tion diagram in the first row. The black (resp. blue and red) bifurcation diagram is related to
variable k (resp. p and s), and refers to the left (resp. left and right) vertical axis of each panel.

In Figure 3 we report the results obtained by considering the same parameter settings
used for Figure 1, now with the endogenous total factor productivity function (20),
for which we set Am = 0.5, A0 = 0.35, A1 = 0.75. Comparing the two dimensional
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bifurcation diagrams, the most evident difference is the presence of an additional region
of instability in Figure 3 (a) with respect to Figure 1 (a), which highlights one (Figure
3 (g)) or two (Figure 3 (j)) Neimark-Sacker bifurcations. As noted after Corollary 8,
endogenizing total factor productivity can lead to a violation of the second stability
condition in (17), which gives rise to the Neimark-Sacker bifurcation. Also in the other
bifurcation diagrams of Figure 3 we can see that the instability interval due to the
Neimark-Sacker bifurcation is larger than in those corresponding to Figure 1, with wider
oscillations.

4.3 Endogenous θ,A and β

Now take into account all the possible sources of interaction, by also considering endoge-
nous β. For the lack of analytical tractability, we avoid to provide sufficient conditions
under which the scenarios of Propositions 6 and 9 are guaranteed. We note that the
probability to survive alters stability conditions through the elasticity of the saving
propensity, which appears as a multiplicative factor of the elasticity of the contact rate.
However, the extensive numerical investigations we performed seem to point out that
its effect on stability is the weakest one when compared to those of θ and A. To show
this, we consider

β(s) = sα, (22)

in which α ∈ (0, 1) allows regulating the concavity of the probability to survive 13. In
Figure 4 we report the simulations obtained by using function (22) with α = 1/2 and the
same setting adopted for the scenarios reported in Figure 3. As we can see, corresponding
panels are almost identical.

5 Model with public debt and subsidies

In this section we study the robustness of the results related to model (6) by taking into
account subsidies and the possibility for the government to issue a debt. In Sections 3
and 4 we studied the limit situation in which adult agents, if infected, are not able to
work and hence do not have any kind of income. In this section, we show that the results
we have found are reliable for the realistic setting, in which the government allocates a
suitable amount of resources for the subsidies of non working agents. In what follows,
we take into account this issue and, to this end, and to support environmental and
healthcare expenditures, in addition to the resources collected from taxation, we assume
that the government can issue a debt. In Figure 5 we report the simulation obtained
introducing subsidies in the setting considered for Figure 4. The additional parameters
are b = 0.02, τex = 0.018 and τend = 0.05τ, which means that the endogenous amount
of resources allocated to subsidies corresponds to the five percent of the overall taxation.
As in Cavalli et al. (2024c), we remark that the values for these additional parameters
are appropriately selected with respect to kt. As we can see, the results reported in the
corresponding panels of Figures 4 and 5 are very similar, highlighting a mild overall effect
on dynamics of the introduction of subsidies. The results confirm the trustworthiness
of the analysis related to the limit case without subsidies. Hence, the discussions and
comments in the previous sections can be applied also to the case with subsidies.

6 Conclusions

The study of interacting economic-epidemiological-environmental domains allowed for
some interesting insights. Firstly, comparative statics show that in some settings it may
be not possible to avoid trade-offs in the distribution of resources for different purposes,
and the regulator must be careful in order to balance them and avoid penalizing too

13The analytical expression for β is actually not differentiable at s = 0, but this is not a problem since
s∗ > 0, so the analytical results for stability are still valid.
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θ0 = 3.9, θ2 = 1

(a)

θ0 = 2.9, θ2 = 3

(b)

θ0 = 3.9, θ2 = 3

(c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4 Endogenous θ,A and β. First row: two dimensional bifurcation diagrams in (ω, τ)
plane for different values of θ0 and θ2. For different values of τ, the one dimensional bifurcation
diagrams, on varying ω, in each column are related to the two dimensional bifurcation diagram
in the first row. The black (resp. blue and red) bifurcation diagram is related to variable k
(resp. p and s), and refers to the left (resp. left and right) vertical axis of each panel.

much one aspect. In addition to this, even if, for any reason, it is needed to devote
more resources to either healthcare or environment, it should be clear that this can be
a source of instability. The exhibited level of complexity highlights the need of a precise
dynamical investigation of the problem. In particular, a too simplified modelling for
a single domain may cause misleading results in view of effective policy interventions.
Moreover, dynamical complexity can arise even if each domain, considered on its own,
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θ0 = 3.9, θ2 = 1

(a)

θ0 = 2.9, θ2 = 3

(b)

θ0 = 3.9, θ2 = 3

(c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5 Endogenous θ,A and β and subsidies. First row: two dimensional bifurcation diagrams
in (ω, τ) plane for different values of θ0 and θ2. For different values of τ, the one dimensional
bifurcation diagrams, on varying ω, in each column are related to the two dimensional bifurca-
tion diagram in the first row. The black (resp. blue and red) bifurcation diagram is related to
variable k (resp. p and s), and refers to the left (resp. left and right) vertical axis of each panel.

would not be a source of instabilities, and this points out the relevance of an approach
based on integrated domains.

For this reason, in the future research we aim at generalizing the interdependence
between the domains, in particular by introducing a direct effect of the environmental
quality on the productivity. Other possible extensions include the possibility to develop
and study dynamical policy interventions that are able to endogenously adapt to the
given contexts. Moreover, we aim to address the issue of firm uncertainty regarding
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the estimation of (marginal) total factor productivity, with the goal of proposing and
studying suitable approximation methods.

Declarations

� Funding: the financial support of the European Union, - Next Generation EU, Mis-
sion 4 Component 1, Project PRIN 2022 “Evolutionary Poisson Games: Theory
and Applications” (project code 2022BNPZY3, CUP H53D23002330006) is gratefully
acknowledged by F. Cavalli, A. Naimzada and D. Visetti.

� Author contribution: each author equally contributed to every part of the contribution,
including conceptualization, literature review, constructing variables, research design,
analysis, and results write up.

� Competing and financial interests: the authors declare no competing interests, and
have no relevant financial or non-financial interests to disclose

Appendix A Proofs

Prop. 1 Setting st = st+1 = s, kt = kt+1 = k and pt = pt+1 = p in (6) we find
(1− s)

(
γ − θ

(
ωg
p

)
s
)
= 0,

k = (1− τ)(1− a)
β(s)

1+β(s)
A(s)kas1−a,

p =
α−λ(1−ω)τ

δ A(s)s1−aka.

(A1)

where g = τA(s)s1−aka. Solving the second equation with respect to k (which is assumed to
be non null), we find

k =

(
β(s)

1 + β(s)
(1− τ)(1− a)A(s)

) 1
1−a

s (A2)

Using the third equation in (A1), we obtain

ωg

p
=

δωτ

α− λ(1− ω)τ

which inserted in the first equation in (A1) allows finding the two solutions s∗df = 1 and

s∗ = γ

θ
(

δωτ
α−λ(1−ω)τ

) . This latter solution is admissible if s∗ < 1, i.e. θ
(

δωτ
α−λ(1−ω)τ

)
> γ,

otherwise no endemic steady state is possible. Replacing s with either s∗df = 1 or s∗ in (A2)
and third equation in (A1) allows concluding. □

Prop. 2 Computing the partial derivatives of each component of ξ∗ with respect to ω we find

∂s∗

∂ω
=− γ(α− λτ)

ω[α− λ(1− ω)τ ]θ (η∗)
Eθ

(
η∗

)
∂k∗

∂ω
=
k∗

s∗

[
1 +

1

1− a

(
E β

1+β
(s∗) + EA(s∗)

)]
∂s∗

∂ω

∂p∗

∂ω
=
A(s∗)

δ
(s∗)1−a(k∗)a

[
λτ − α− λτ

ω
Eθ

(
η∗

)
(1

+
a

1− a
E β

1+β
(s∗) +

1

1− a
EA(s∗)

)]
=
A(s∗)

δ
(s∗)1−a(k∗)a

[
λτ − α− λτ

ω
Eθ

(
η∗

)
Eg∗(s∗)

]
Recalling that Eθ(g) < 0 for g > 0 and both E β

1+β
and EA are strictly positive, we can

conclude. □

Prop. 3 and 4 We begin with the study of stability for the endemic steady state. We compute
each element of the Jacobian matrix of M evaluated at ξ∗. We have

J11 =
∂M1

∂s
(s, k, p)
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= −θ(η)(1− s)− γ + s

[
θ(η)− ωτkas1−a

p
θ′(η)

(
A′(s) +

A(s)

s
(1− a)

)
(1− s)

]
+ 1

from which

J11 = −θ(η)(1− s)− γ + sθ(η)− ηθ′(η)

(
s
A′(s)
A(s)

+ 1− a

)
(1− s) + 1

Evaluating it at ξ∗, at which we have s∗ = γ/θ(η∗), we find

J∗
11 = (γ − θ(η∗))

[
1 + Eθ(η

∗)
(
1− a+ EA(s∗)

)]
+ 1

We have

J12 =
∂M1

∂k
(s, k, p) = −aωτA(s)

p
s(1− s)θ′(η)

( s

k

)1−a
= −aηθ′(η)s(1− s)

k

so

J∗
12 =

as∗Eθ(η
∗)(γ − θ(η∗))
k∗

We have

J13 =
∂M1

∂p
(s, k, p) = s(1− s)θ′(η)

ωτA(s)s1−aka

p2
=

ηθ′(η)s(1− s)

p
so

J∗
13 = −Eθ(η

∗)s∗(γ − θ(η∗))
p∗

Let us consider the second equation of (6). We have

J21 =
∂M2(s, k, p)

∂s
=

M2

s
EM2

(s)

where
EM2

(s) = Eβ/(1+β)(s) + EA(s) + 1− a

J21 =
∂M2(s, k, p)

∂s
=

M2(s, k, p)

s

(
E β

1+β
(s) + EA(s) + 1− a

)
so

J∗
21 =

k∗

s∗

(
E β

1+β
(s∗) + EA(s∗) + 1− a

)
We have

J22 =
∂M2(s, k, p)

∂k
= a(1− τ)(1− a)

β(s)

1 + β(s)
A(s)ka−1s1−a =

aM2(s, k, p)

k

and hence J∗
22 = a. Moreover, J23 = J∗

23 = 0. Noting that

(α− λ(1− ω)τ)A(s)kas−a =
M3(s, k, p)− (1− δ)p

s

we have

J31 =
∂M3(s, k, p)

∂s
= (α−λ(1−ω)τ)A(s)

(
k

s

)a [
s
A′(s)
A(s)

+ 1− a

]
=

(
M3 − (1− δ)p

s

[
s
A′(s)
A(s)

+ 1− a

])
from which

J∗
31 =

δp∗

s∗
(EA(s∗) + 1− a)

Finally, we have

J32 =
∂M3(s, k, p)

∂k
= a(α− λ(1− ω)τ)A(s)ka−1s1−a = a

M3 − (1− δ)p

k
so

J∗
32 = aδ

p∗

k∗

and

J33 = J∗
33 =

∂M3

∂p
(ξ∗) = 1− δ

The resulting Jacobian matrix is then

J∗ =


(γ − θ(η∗))[1 + Eθ(η

∗)(EA(s∗) + 1− a)] + 1
as∗Eθ(η

∗)(γ−θ(η∗))
k∗ −Eθ(η

∗)s∗(γ−θ(η∗))
p∗

k∗

s∗

[
E β

1+β
(s∗) + EA(s∗) + 1− a

]
a 0

δp∗

s∗ (EA(s∗) + 1− a) aδ p∗

k∗ 1− δ
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As reported in Lines et al. (2020), stability is guaranteed by
1 +m(J∗) + tr(J∗) + det(J∗) > 0
1 +m(J∗)− tr(J∗)− det(J∗) > 0

1− (det(J∗))2 −m(J∗) + tr(J∗) det(J∗) > 0
3−m(J∗) > 0

where m(J∗) denotes the sum of principal minors of order two of the Jacobian. We stress that
the first and the third conditions are respectively related to the possible emergence of a flip
and Neimark-Sacker bifurcation. Since

tr(J∗) =a− δ + 2 + (γ − θ(η∗))[1 + Eθ(η
∗)(EA(s∗) + 1− a)]

det(J∗) =a

[
1− δ + (γ − θ(η∗))

(
1− δ − Eθ(η

∗)E β
1+β

(s∗)

)]
m(J∗) =(1 + a)(1− δ) + a+ (γ − θ(η∗))

[
1 + a− δ + Eθ(η

∗)

(
−aE β

1+β
(s∗)

+ EA(s∗) + 1− a)]

we find that the second condition becomes δ(θ(η∗)−γ)(1−a) > 0 and hence it is always fulfilled.
Using the expression of Eg∗ defined by (12) and rearranging terms in the first, third and

fourth stability conditions, we find the three conditions in (13).
We conclude with the study of stability for the disease free steady state. Recalling the

expressions of Jij and evaluating them at ξ∗df = (1, p∗df , k
∗
df ) we find that J∗

df is a lower triangular
matrix in which the diagonal elements, providing its eigenvalues, are

J∗
11 = θ(η∗)− γ + 1, J∗

22 = a ∈ (0, 1), J∗
33 = 1− δ ∈ (0, 1).

Since θ(η∗) − γ < 0, J∗
11 < 1 and since, thanks to θ(η∗) − γ > −1, we have J∗

11 > 0, and this
concludes the proof. □

Proof of Proposition 6 Since we focus on possible bifurcations, we take into account only the
first two conditions in (14). We recall that η∗(ω) is increasing and α > λ ≥ λτ thanks to
Assumption 1. Moreover, we recall that the existence of the endemic steady state requires
γ/θ(η∗) < 1. If this is true for any ω ∈ [0, 1], we can choose ωtr = 1, otherwise, ωtr corresponds
to the value of ω at which γ/θ(η∗) = 1. In both cases, stability of the endemic steady state
must be studied on [0, ωtr).

The remainder of the proof proceeds as follows: we take into account the two stability
conditions in (14) and we find the set on which they are not fulfilled, whose ending points
identify possible bifurcation values.

Since (
2− (θ(η)− γ)

(θ(η)− γ)

)′
= − 2θ′(η)

(θ(η)− γ)2
> 0 (A3)

the right hand side of the first condition in (14) is strictly increasing while, thanks to E′
θ(η) < 0,

its left hand side is strictly decreasing, and hence the inequality is either always fulfilled or
there exists a unique ηf such that it is true for η > ηf . Consequently, if the inequality is always
fulfilled, we do not have any value of ω to remove from the stability set, and we can choose
ωf < 0 so that [0, ωf ] is empty. Conversely, solving δωτ

α−λ(1−ω)τ
> ηf , we obtain the inequality

τ(δ − ληf )ω > (α− λτ)ηf .

If δ − ληf > 0, we obtain the stability interval ω > ωf =
ηf (α−λτ)
τ(δ−ληf )

, and the first condition in

(14) is false on [0, ωf ]. If instead δ − ληf ≤ 0, then the inequality is not fulfilled and we may
pose ωf = 1. This provides the conclusions about the flip bifurcation threshold.

Now we focus on the second condition in (14). The right hand side can be rewritten as

δ

1− a+ aδ + a(1− δ)(θ(η)− γ)
− δ

θ(η)− γ
− 1− a+ aδ

1− a

Let us introduce f :
[
0,min

{
δτ
α , θ−1{γ}

}]
→ R, η 7→ f(η) defined by

f(η) = Eθ(η)−
(

δ

1− a+ aδ + a(1− δ)(θ(η)− γ)
− δ

θ(η)− γ
− 1− a+ aδ

1− a

)
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whose domain takes into account all the possible and feasible values of η∗ for ω ∈ [0, 1].
We have

(θ(η)− γ)2f ′(η)
θ′(η)

= (θ(η)− γ)2
E′
θ(η)

θ′(η)
− δ +

aδ(1− δ)(θ(η)− γ)2

[1− a+ aδ + a(1− δ)(θ(η)− γ)]2
(A4)

Note that(
(θ(η)− γ)2

[1− a+ aδ + a(1− δ)(θ(η)− γ)]2

)′
=

2(1− a+ aδ)(θ(η)− γ)

[1− a+ aδ + a(1− δ)(θ(η)− γ)]3
θ′(η) < 0 (A5)

and (
(θ(η)− γ)2

E′
θ(η)

θ′(η)

)′
= 2(θ(η)− γ)E′

θ(η) + (θ(η)− γ)2
E′′
θ (η)θ

′(η)− E′
θ(η)θ

′′(η)

(θ′(η))2
(A6)

is negative thanks to (15). This allows concluding that function (θ(η)−γ)2f ′(η)/θ′(η) is strictly
decreasing and can have at most one zero. Consequently, also f can have at most one critical
point, which guarantees that f(η) = 0 can have at most two solutions.

Different situations can occur, but they must be characterized by a positive f on a right
neighborhood of η = 0, since, noting that Eθ(0) = 0, we have

f(0) =
(1− a+ aδ)[1− a+ a(θ(0)− γ)][δ + (1− δ)(θ(0)− γ)]

(θ(0)− γ)(1− a)[1− a(1− δ)(1− (θ(0)− γ))]
> 0

A first situation is that in which we may have f(η) > 0 for any η, in which the second condition
in (14) is always fulfilled and we can choose ω1,ns > ω2,ns so that [ω1,ns, ω2,ns] is empty.

In a second situation, there is just a unique solution to f(η) = 0 and f(η) is positive on
0 < η < η1,ns. In this case, setting ω1,ns as the value for which δωτ

α−λτ+λωτ = η1,ns and
ω2,ns = ωtr, we have that the second condition in (14) is not fulfilled for ω ∈ [ω1,ns, ωtr]. In the
last possible situation we have two solutions to f(η) = 0, and f(η) is positive for η < η1,ns and

η > η2,ns and negative otherwise. Setting ω1,ns and ω2,ns as the values for which δωτ
α−λτ+λωτ is

equal to η1,ns and η2,ns, respectively, we have that the second condition in (14) is not fulfilled for
ω ∈ [ω1,ns, ω2,ns]∩ [0, ωtr]. This provides the conclusions about the Neimark-Sacker bifurcation
thresholds. □

Proof of Corollary 7 We have Eθ(η) = −θ1θ2η
θ2 and E′

θ(η) = −θ1θ
2
2η

θ2−1 < 0. Setting z =

θ0e
−θ1η

θ2
, inequality (15) corresponds to

θ1θ
2
2η

θ2−2(1− θ2) > −θ1θ
2
2η

θ2−1 (θ2 − 1)(z − γ) + θ1θ2η
θ2z + γθ1θ2η

θ2

η(z − γ)
(A7)

Noting that for η ∈
(
0,min

{
δτ
α , θ−1{γ}

})
we have z − γ > 0, the previous inequality is

equivalent to
θ1θ2η

θ2(z + γ) > 0 (A8)

and hence it is true. □

Proof of Proposition 9 We stress once more that since we study bifurcations, we take into
account only the first two conditions in (17). We start noting that the right hand sides in both
conditions in (14) and (17) are the same, so we focus on the left hand sides.

Since Eθ(η) < 0, EA

(
γ

θ(η)

)
> 0, E′

θ(η) < 0 and
(
EA

(
γ

θ(η)

))′
> 0, we have(

Eθ(η)

(
1 +

1

1− a
EA

(
γ

θ(η)

)))′
= E′

θ(η)

(
1 +

1

1− a
EA

(
γ

θ(η)

))
+
Eθ(η)

1− a

(
EA

(
γ

θ(η)

))′
< 0.

The left hand side of the first condition in (17) is then decreasing and, recalling (A3), the
same conclusions of Proposition 6 related to the first stability condition hold true also in this
situation.

Let us introduce f̃ :
[
0,min

{
δτ
α , θ−1{γ}

}]
→ R, η 7→ f̃(η) defined by

f̃(η) = Eθ(η)

(
1 +

1

1− a
EA

(
γ

θ(η)

))
−
(

δ

1− a+ aδ + a(1− δ)(θ(η)− γ)
− δ

θ(η)− γ
− 1− a+ aδ

1− a

)
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whose domain takes into account all the possible and feasible values of η∗ for ω ∈ [0, 1]. Following

the proof of Proposition 6, we want to show that
(
(θ(η)−γ)2f̃ ′(η)

θ′(η)

)′
is negative, in order to have

the same conclusions about the second stability condition.
Recalling (A4) and (A5), this is guaranteed if (θ(η)− γ)2

(
Eθ(η)

(
1 + 1

1−aEA

(
γ

θ(η)

)))′

θ′(η)


′

< 0

We have (θ(η)− γ)2
(
Eθ(η)

(
1 + 1

1−aEA

(
γ

θ(η)

)))′

θ′(η)


′

=

(
(θ(η)− γ)2(Eθ(η))

′

θ′(η)

)′

+
1

1− a

 (θ(η)− γ)2
(
Eθ(η)EA

(
γ

θ(η)

))′

θ′(η)


′

in which, recalling (A6), the former addend is negative under condition (15), which is implied

by condition (18) since E′
θ(η) < 0,

(
EA

(
γ

θ(η)

))′
> 0 and EA

(
γ

θ(η)

)
> 0. Concerning the

latter addend we have (θ(η)− γ)2
(
Eθ(η)EA

(
γ

θ(η)

))′

θ′(η)


′

=

 (θ(η)− γ)2
(
E′
θ(η)EA

(
γ

θ(η)

)
+ Eθ(η)

(
EA

(
γ

θ(η)

))′
)

θ′(η)


′

=

(
(θ(η)− γ)2

θ′(η)

)′
E′
θ(η)EA

(
γ

θ(η)

)
+

(
(θ(η)−γ)2

θ′(η)

)′
Eθ(η)

(
EA

(
γ

θ(η)

))′

+
(θ(η)− γ)2

θ′(η)
Eθ(η)

(
EA

(
γ

θ(η)

))′′
+

(θ(η)−γ)2

θ′(η)
E′
θ(η)

(
EA

(
γ

θ(η)

))′

+
(θ(η)− γ)2

θ′(η)
E′′
θ (η)EA

(
γ

θ(η)

)
+

(θ(η)−γ)2

θ′(η)
E′
θ(η)

(
EA

(
γ

θ(η)

))′

Considering the second and third addends in the previous expression (i.e. those having factor
Eθ(η)) we have(

(θ(η)− γ)2

θ′(η)

)′
Eθ(η)

(
EA

(
γ

θ(η)

))′
+

(θ(η)− γ)2

θ′(η)
Eθ(η)

(
EA

(
γ

θ(η)

))′′
< 0

thanks to the bound on
(
EA

(
γ

θ(η)

))′′
in (19). Considering all the remaining addends we have(

(θ(η)− γ)2

θ′(η)

)′
E′
θ(η)EA

(
γ

θ(η)

)
+
(θ(η)− γ)2

θ′(η)

[
2E′

θ(η)

(
EA

(
γ

θ(η)

))′
+ E′′

θ (η)EA

(
γ

θ(η)

)]
< 0

thanks to the lower bound on E′′
θ (η) in (18). This allows concluding the proof as in Proposition

6. □

Proof of Corollary 10 We have already shown in the proof of Corollary 7 that Eθ(η) < 0. We
have

EA(s) =
(1−Am)s

(1−Am)s+A1Am −A0

and hence, setting z = θ0e
−θ1η

θ2
,(

EA

(
γ

θ(η)

))′
=

ηθ2−1γθ1θ2z(A1Am −A0)(1−Am)

[γ(1−Am) + (A1Am −A0)z]2

which is positive thanks to the first condition in (21).
Let us focus on condition (18). Recalling (A7) and using

−2E′
θ(η)

(
EA

(
γ

θ(η)

))′

EA

(
γ

θ(η)

) =
2η2θ2−2θ21θ

3
2z(A1Am −A0)

γ(1−Am) + z(A1Am −A0)
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condition (18) can be rephrased into

−(A1Am −A0)z
2 + (3A1Am − 3A0 + 1−Am)γz + (1−Am)γ2

(z − γ)[γ(1−Am) + (A1Am −A0)z]
> 0

Since z > γ, the sign of the left hand side depends on that of −(A1Am − A0)z
2 + (3A1Am −

3A0 + 1 − Am)zγ + (1 − Am)γ2. We study its positivity for z ∈ (γ, γ/A0), which guarantees

that condition (18) is fulfilled for η ∈
(
0,min

{
δτ
α , θ−1{γ}

})
∩
(
θ−1

(
γ
A0

)
, θ−1

(
γ
A1

))
. The

concave polynomial −(A1Am − A0)z
2 + (3A1Am − 3A0 + 1− Am)γz + (1− Am)γ2 of degree

two in z is positive for z = γ, while at z = γ/A0 positivity requires

−A2
0(Am + 2) +A0(2−Am + 3A1Am)−A1Am > 0. (A9)

The previous condition is fulfilled for A0 ∈
(
1
3 , A1

)
. In fact, the left hand side is a concave

parabola in variable A0. Since for A0 = 1
3 we have that

−1

9
(Am + 2) +

1

3
(2−Am + 3A1Am)−A1Am = −4

9
Am +

4

9
≥ 0

since Am ≤ 1 and for A0 = A1 we have that

(1−Am)(A1 −A2
1) ≥ 0

this gives (A9).
This guarantees that condition (18) holds true.
Let us focus on condition (19). We have

(
EA

(
γ

θ(η)

))′′
=
(A1Am −A0)(1−Am)γθ1θ2η

θ2−2z

[γ(1−Am) + (A1Am −A0)z]3
[γ(1−Am)(θ2 − 1− θ1θ2η

θ2)

+ (A1Am −A0)z(θ2 − 1 + θ1θ2η
θ2)]

so condition (19) can be rephrased as

−2η2θ2γ2θ21θ
2
2z

2(A1Am −A0)(1−Am)(A1Am −A0 + 1−Am)

η2(z − γ)[γ(1−Am) + z(A1Am −A0)]3
< 0

which is true thanks to the first condition in (21). □
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