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Abstract

We develop an empirical application on a large dataset of European stock re-
turns, in order to estimate the risk premia. We propose an application of the
Three-Pass Estimation Method (3PEM) by Xiu and Giglio (2021) as a multipur-
pose tool in asset pricing. By assuming the Fama—French Five-Factor model (Fama
and French (2015)) as baseline model, we show that the 3PEM yields risk premium
estimates that are more economically plausible and statistically robust than those
obtained using the traditional two-pass estimation method (2PEM). Moreover, we
extend the results by Xiu and Giglio (2021) showing that the 3PEM is able to detect
noise in tradable factors. Furthermore, the method is used to denoise the observed
factors, providing purified versions that better capture the systematic components
of risk. We also identify noisy factors, and yield denoised factor series that improve
the estimation of stock-level exposures and expected returns.
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1 Introduction

Linear factor models lie at the heart of modern asset pricing. Their origins trace back
to the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965), which
formalized the idea that expected returns compensate investors for exposure to a single
source of systematic risk. The restrictive structure of the CAPM motivated the devel-
opment of more flexible models, most notably the Arbitrage Pricing Theory (APT, Ross
(1976)), which allows multiple factors — economic, financial, or statistical — to jointly
explain the cross-section of returns.

Factor models are essential both for portfolio allocation and for evaluating investment
performance because they provide structured estimates of expected returns and the co-
variance matrix, which many optimization procedures rely on. However, classical mean—
variance optimization (Markowitz ([1952)) is highly sensitive to estimation errors, making
factor-structure assumptions a practical way to reduce dimensionality and stabilize in-
puts. At the same time, factor models allow practitioners to distinguish true managerial
skill (alpha) from compensation for systematic risks (beta), but this requires specifying
the model correctly: omitting relevant factors or including spurious ones can bias alpha
estimates, distort inference, and ultimately lead to poor investment decisions (see, e.g.,
Chincarini and Kim (2006), Lazzari and Navone (2003)).

Despite their wide applicability, empirical implementation of factor models faces two
enduring challenges: model specification and measurement error. First, selecting the
number and nature of factors is non-trivial. Including irrelevant or weak factors introduces
noise and biases risk-premium estimates (Bryzgalova (2015)), whereas omitting important
factors leads to classic omitted-variable bias, affecting both factor loadings and premia.
A rich econometric literature provides tools for estimating the number of latent factors
(e.g., Bai and Ng (2002); Onatski (2010); Ahn and Horenstein (2013); Gagliardini et
al. (2019)), but these methods do not identify which specific factors are missing nor
correct for the resulting bias. Second, observable factors—tradable or otherwise—may
suffer from measurement error. Tradable factors such as the Fama—French portfolios are
straightforward to use, but they remain noisy proxies constructed from finite samples and
sorting rules (Racicot et al. (2011)). Non-tradable macroeconomic factors introduce even
larger identification issues, as their premia cannot be directly estimated from time-series
averages. Traditional methods such as the Fama-MacBeth two-pass estimator (Fama and
MacBeth (1973)) assume noise-free factors and are therefore sensitive to both omitted
variables and measurement error.

Recent advances have addressed these limitations. The Three-Pass Estimation Method
(3PEM), introduced by Xiu and Giglio (2021)), offers a unified and robust procedure for
estimating risk premia when observable factors are noisy or incomplete. Leveraging the
rotation-invariance property of latent factor spaces, the SPEM yields consistent estimates
of the prices of risk even in the presence of omitted factors or errors-in-variables. While
originally designed for non-tradable factors, the method naturally extends to tradable
ones, where measurement error remains non-negligible. In this paper, we empirically
show that, since the tradable factors contain a measurement error, the 3PEM is also a
crucial tool involving tradable factors.

We show that the SPEM is a multi-purpose tool in asset pricing. It is employed to perform
several intermediary tasks, such as estimating risk premia, analyzing observable factors,



and detecting weak factors to guide the selection of an appropriate model specification,
with the final objective of computing the expected returns of stocks. In particular, the
suggested methodology is integrated in the following algorithm:

(i) Estimate the risk premia of factors (in this contribution, factors are tradable) and
conduct inference on them. It allows for accounting for the omitted variable and
error-in-variables problems. Even when some priced factors are missing from the
model, the estimated risk premia of the included observable factors remain consis-
tent.

(ii) Given a model specification, one can use 3PEM to detect spurious or weak factors.
Therefore, it can be used as a tool for model specification and factor selection by
identifying and excluding factors that are not significantly priced.

(iii) 3PEM can be next used to denoise observable factors, including tradable ones, by
filtering out idiosyncratic or measurement error components and, thus, providing
a cleaner representation of the true systematic sources of risk. These factor obser-
vations are used to further compute the factor loadings at the stock level and the
expected values of stock returns.

In this paper, we provide these results by developing an empirical application on the Eu-
ropean equity market, using as a base model the well-known Fama and French Five (FF5)
factors model (Fama and French (2015)). The FF5 factors serve as a practical benchmark,
but the approach is fully general and applies to any linear factor model. We compare
the results of the 3PEM with those of the traditional two-pass estimator and with the
time-series averages of the tradable factors. The analysis shows that the 3PEM delivers
more economically plausible and statistically robust risk-premium estimates, identifies
noisy factors, and yields denoised factor series that improve the estimation of stock-level
exposures and expected returns.

The remainder of the paper is organized as follows. Section E introduces the theoretical
model. Section J outlines the Three-Pass Estimation Method. Section @ presents the
data and empirical findings, including risk-premium estimation, factor denoising, and
stock-level implications. Section p concludes.

2 Model Setting

In this section, we introduce the theoretical framework describing the linear setting for
excess returns. In particular, we follow the notation in Xiu and Giglio (2021). First, we
introduce the setting that accounts for the restricted zero-beta rate, and then generalize
it to allow for an unrestricted zero-beta rate.

Let us define r; the n x 1 vector of excess returns for n testing assets. At each time period
t, r; is described by the following linear model:

1= By+Bvi +u, (1)

with
Ji=u+v

and E(v,) =0, where f; is a vector gathering the p true latent factors, defined as the sum
of two components: the constant mean pu capturing the long-run average values of the
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true factors, and the time-varying innovation component v; reflecting new, unexpected
information that causes deviations from the mean. Thus, u represents the mean around
which the factors tend to fluctuate over time. Moreover, assuming that E(v;) =0 implies
that the factors, on average, revert to their mean pu over time, ensuring that the shocks
are temporary, although they may have a significant impact on asset prices in the short
run. Futhermore, in Eq. (ﬂ), the vector y collects the risk premia of factors f;. The
n x p matrix B gathers the factor loadings, i.e., each of its elements B;; measures the
sensitivity of the return on asset i to factor j. The terms By and Bv; are capturing the
average expected risk premium and the time-varying impact of unexpected factor shocks
on returns, respectively. Lastly, u, is the vector of idiosyncratic errors, such that E(u,) =0
and Cov(u,v) =0.

In general, we do not observe the p factors f;, but we usually observe their d < p proxies.
Thus, we define g; as the set of d observable factors (e.g., macroeconomic variables,
financial market indexes, portfolios,...) that relate to the true unobservable factors f;
through the following measurement error model:

g=&+nv+z, (2)

where & is a vector of constants, and N is a d x p loading matrix, where each element
7n;j measures the sensitivity of the i-th observed factor proxy to the j-th true factor.
Finally, z; is the vector of measurement errors, such that E(z,) =0 and Cov(z,v;) = 0.
Since the observed factor proxies do not perfectly capture the true underlying factors, the
measurement error arises and is capturing the noise or inaccuracies due to, for example,
the data limitations, incorrect proxy selection, or other empirical measurement issues.
Consequently, the vector of d risk premia of the observable factors, g;, is defined as:

Ye=MY. (3)

The estimation model from Eq. (m) and (E), can be rewritten in matrix notation as
follows,
R=By;+BV+U, and G=EE+nV +Z, (4)

where R € R™7 is the matrix of excess returns, B € R™*? is the matrix of factor loadings,
17 is the T vector of ones, and risk premia and innovations are collected in y € RP*!
and V € RP*T | respectively. Furthermore, the matrix of observable factors is G € R¥*T |
E € RY*T refers to the constant terms, and matrix 7 € R¥*P collects the loadings to
the observed proxies factors. Finally, error terms are gathered in matrices U € R™T
and Z € RP*T with E[V] = E[U] = E[Z] = 0. Moreover, we also assume that E[UV'] =0
guarantees the ability to separate common factors from idiosyncratic errors, and E[ZV'] =
0 ensures that the model can distinguish the true source of risk from noise in observable
factors. The above orthogonality condition is fundamentally satisfied because applying
PCA on a large panel of asset returns recovers the factor space precisely by exploiting
the common variation across returns, filtering out the idiosyncratic part. We also note
that this theoretical framework allows for heteroskedasticity and autocorrelation of v;, u;,
and z;. Finally, the setting proposed in Eq. (@) can be easily extended to the unrestriced
zero-beta rate as follows,

R = Wiy + By + BV +U, (5)



where 1, € R"*! is a vector of ones.

In this setting, Xiu and Giglio (2021) show that the risk premia ¥, defined in Eq. (E) can
be estimated due to the rotation invariance property. In fact, from Eq. (R), the observed
factors are expressed as a projection onto true latent factors, which span the true factor
space. If we omit some of the true factors, standard estimators will suffer from omitted
variable bias. Nevertheless, we can apply PCA on a large panel of returns to get some
rotated version of the factor space, not the exact v;, i.e., we can recover a rotation of the
latent factors v; = Hvy, where H € RP*P is an invertible matrix such that H'H = HH' =1,,
H'=H' and det(H) = 1. Thus, Eq. @) and () becomes

e = ﬁ?*‘ﬁ‘?t‘i‘ut,
g = S+ +z,

where B =BH ™!, y=HY, ¥, = Hv,, and i = nH . Noting that ¥; can be easily extracted
by applying Principal Component Analysis (PCA) on the large panel of returns and, since
it is a rotated version of the true factors, i.e., it spans the same risk space, the estimator
for the risk premia of observable factors is given by:

Te=09=nH 'Hy=ny.

Thus, even if we do not know the true H, we are able to find an estimate of the risk
premia of observable factors. However, the true matrix of factor loadings 1 and the risk
premia of latent factors, ¥ cannot be identified separately.

3 The Three-Pass Estimation Methodology

In this section, we review the 3SPEM presented in Xiu and Giglio (2021)). This methodol-
ogy is based on three steps and aims to estimate the risk premia vector of g,. Hereafter,
we provide a description of the three passes.

1. Estimation of V and B. We apply PCA on (nT)~'R'R, where R is the matrix of
demeaned returns, such that the element [Fj;] is defined as 7j; = ri; — %Z,T:Ir,-,t.
This matrix captures the variance and covariance structure of the asset returns,
reflecting the true structure of data without being distorted by its scale. We then
obtain the following eigenvalue decomposition:

(nT)"'R'R = QAQ/,

where Q is an T x T matrix whose columns are the orthogonal eigenvectors of
(nT)"'R'R, and A is an T x T diagonal matrix whose diagonal elements are the
eigenvalues A1,As,...,Ar. Each eigenvector points in a direction where the data
varies the most when projected onto this direction. Similarly, eigenvalues indicate
the magnitude of variance captured by each eigenvector, such that larger eigenvalues
correspond to eigenvectors that explain more of the total variance in the data.
By decomposing (nT)~'R'R into its eigenvectors and eigenvalues, it is possible to
identify the components that capture the most significant patterns in the asset
returns.



In this setting, the true number p of latent factors is an unknown parameter. In line
with Xiu and Giglio (2021), the following consistent estimator for p is introduced:

p=arg min ((nT) '"A;(RR)+jx¢(n,T))—1, (6)

1<j<Pmax

where the term A;(R'R) corresponds to the j-th eigenvalue of the matrix R'R, and
¢(n,T) is a penalty term depending on the number of assets and the time periods
considered.

Then, the following approximation holds:
1p/'p / u /
(nT)"'RR~ QpApQs =) Ni&i€/, (7)
i=1

where A is the diagonal matrix containing the first p sorted eigenvalues, and Qj; is
the matrix of their corresponding orthogonal eigenvectors. Thus, each term 4;&;&/
represents the contribution of the i-th principal component to the total covariance
matrix, scaled by its eigenvalue A;. Finally, the estimated matrix of latent factors

is defined as:
VTV gy,

and the corresponding estimated matrix of factor loadings:

2. Estimation of y. In order to estimate the risk premia of latent factors, a cross-
sectional regression (CSR) technique is employed. In particular, we regress the

A

average returns of the n testing assets on the estimated factor loadings, B:
r= ﬁ y+ Uz,

where 7 = [fl rpooe-- fn] /, and the risk premia of estimated latent factors are given

PPN BN
7= (BB) B
3. Estimation of 9. From Eq.(@), we have
G=G-E[G|=¢+nNV+Z—e=nV+Z, (8)

where G is the matrix (d x T') of the demeaned observable factors. The true factors

V are not directly observable and we can deduce a rotated version of them, V
through PCA, and

G=nV+Z. (9)

Thus, the time-series regression allows to project g; onto the space spanned by the
estimated factors V and we get:

f =GV,

IThe full derivation is available in Appendix B.



Note that if the factors are tradable, then
G=nV+2,

and f) = GV'(VV")~1. Finally, we estimate the risk premia of observable factors as
follows:

% =17 (10)
Moreover, we also get the denoised version of the observable factors as the fitted
]
value of the model ()
G=1V. (11)
From Eq. (B) is also possible to decompose the variance of the observable factors in

the variance due to the exposure to the true risk factors and the residual variance
which can be attributable to the measurement error and noise:

Var(G) =Var(E4+ MV +Z) =Var(nV +Z) =Var(nV) +Var(Z)
Substituting for the estimated parameters f) and V:
Var(G) = Var(§V 4+ Var(Z) = Var(G) + Var(Z) (12)

Therefore, in the case of tradable factors, rather then using the noisy version of
servable factors, it is possible to use their denoised version, G, as represented in
11].

For the unrestricted zero-beta rate in model (H), we get

o = (l;Mﬁln)illéMBf
= GV'(WV) (B, B) T B'M, 7,

A

where Mg =1, —B(B'B)"'B" and M, = I, — 1,(1/1,) 1.

4 Data and Empirical Analysis

This section mainly presents empirical results. First, we describe the datasets employed
in the analysis. Next, we present the results of our estimation of European risk premia.
Furthermore, we analyse the denoised Fama-French factors, and finally investigate the
risk exposures and expected returns.

4.1 Data Description

The empirical analysis conducted in this study draws on two complementary datasets:
(i) a dataset of observable factors and portfolio returns constructed in accordance with
the Fama—French methodology, and (ii) a dataset of individual European stock returns.
Both datasets are sampled at a monthly frequency.

The first dataset is employed to estimate factor risk premia and to implement the de-
noising procedure. It is sourced from Kenneth R. French’s Data Library French (2023)
and pertains to the European market. This portfolio-level dataset comprises returns
for 132 characteristic-sorted portfolios, including 25 size-book-to-market portfolios, 25
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size-profitability portfolios, 25 size-investment portfolios, 25 momentum portfolios, and
32 additional style-based portfolios. In addition, observations on five tradable factors
—namely, the market excess return (Mkt — Rf), size (SMB), value (HML), profitability
(RMW), and investment (CMA) — are collected for the same sample period.

The second dataset represents the European investment equity universe. The analysis
covers the period from January 2005 to May 2025. The dataset consists of time series
of adjusted closing prices for 2,327 European equities sourced from the Europe FactSet
Market Index. The index is designed to capture a broad, investable cross-section of Eu-
ropean stocks by including firms listed on major European exchanges that satisfy specific
liquidity and capitalization requirements. Only actively traded, primary equity listings
are retained, while inactive securities, secondary listings, and non-equity instruments are
excluded, Furthermore, only stocks with at least five years of historical price data are
included®.

4.2 Estimation Results and Risk Premia

We collect results on the implementation of the SPEM and the conventional 2PEM frame-
work on the Furopean equity market to assess its empirical performance. Following
the procedure outlined in Section H, the first step is to recover the latent factor space.
Thus, we estimate the number of common latent factors. Figure m reports the eigenvalue
structure and provides clear evidence of a low-dimensional factor structure in European
portfolio returns. Panel A displays the distribution of the first ten eigenvalues of the
sample covariance matrix. The first eigenvalue dominates the spectrum, accounting for
the largest share of common variation in returns. Upon removing the first eigenvalue
(Panel B), the remaining spectrum exhibits a smooth, monotonic decline. The cumula-
tive explained variance shown in Panel C rises sharply with the inclusion of the first two
principal components—surpassing 90% of total variance—and reaches roughly 95% when
the first ten components are included. This pattern supports the presence of a small
number of economically meaningful latent factors. Panel D compares the normalised in-
formation criteriaaproposed by Bai and Ng (2002). In particular, we compute the PCP1,
ICP1, and BIC3.2 All three criteria experience a pronounced drop between one and
two factors, and then flatten substantially. The minima occur in the range between five
and seven factors, with the Bayesian criterion (BIC3) reaching its lowest value at p = 6.
This result motivates the choice of six latent factors as the empirical benchmark for the
subsequent estimation of risk premia. The convergence of different criteria around this
dimension reinforces the robustness of the selected factor space. It provides a balanced
trade-off between parsimony and explanatory power, in line with the asymptotic guidance
in Bai and Ng (2002) and the empirical framework of Xiu and Giglio (2021).

A complementary perspective comes from analysing how well the latent factor structure
extracted in the first step is able to reconstruct the demeaned returns. In this regard,
Figure a demonstrates that the latent space is able to capture a substantial share of the
common variation in returns.

2Newly listed firms represent a distinct analytical category and are therefore excluded from the present
analysis. We also allow for prices below one unit , as the analysis relies on simple rather than logarithmic
returns. All prices are denominated in U.S. dollars to ensure consistency with the Fama—French factors,
which are reported as simple returns based on dollar-denominated prices.

3Based on the minimization approach in Eq. (B), Bai and Ng (2002) proposed two classes of PC and
IC criteria w.r.t the definition of the variance and penalty functions.



Moreover, a further diagnostic concerns the economic interpretability of the recovered
latent space. To this end, we compute the correlation matrix between the estimated
latent factors and the observable Fama-French factors, as shown in Table [ll. We observe
that the first latent factor correlates almost perfectly with the market risk factor and it
shows that the market component is largely recovered by the latent representation. A
similarly strong correlation is observed between the second latent factor and SMB, which
reflects the independence of the size premium from the remaining factor dimensions.
However, HML, RMW, and CMA exhibit a different pattern. The third latent factor
loads strongly on HML and only moderately on RMW and CMA. Therefore, it suggests
that these factors do not correspond to clean, isolated directions in the latent space.
Instead, they share common variation and occupy a more diffuse and weaker subspace of
the pricing kernel. This behavior is thus consistent with their known lack of orthogonality
in empirical datasets.

Using the five-factor model of Fama and French (2015) as the baseline linear specifica-
tion, Table P reports the estimated risk premia. Specifically, we present the estimates
obtained from the traditional two-pass estimation method (2PEM) and from the Three-
Pass Estimation Method (3PEM), and compare them with the time-series averages of the
corresponding factor returns. It is important to notice that the choice of Fama-French
five-factor specification serves purely as an empirical illustration of the 3PEM framework
rather than a structural requirement of the method. The 3PEM can be applied to any
linear factor model, including specifications based on alternative tradable or non-tradable
factors. In fact, the observable factors simply act as proxies for the underlying sources of
systematic risk, and the first step of the 3PEM procedure recovers the latent factor space
independently of the chosen economic or fundamental model. Hence, the FF5 model is
one possible application among many, selected in this work due to its extensive use in
the literature and its relevance for explaining equity returns. Additionally, as we show
in the subsequent analysis, the 3PEM also helps to evaluate the actual relevance of the
factors included in the specification.

Before analysing the estimated risk premia obtained from the 2PEM and 3PEM, it is
useful to examine some intermediary results from the first two steps of the traditional
two-pass procedure. In particular, we inspect the cross-sectional distribution of the es-
timated factor loadings and their relation to average excess returns, as represented in
Figures H and . Although the estimated betas show reasonably and economically plau-
sible distributions, the beta-return scatter plots reveal that the cross-sectional pricing
relationship is weak for most factors. The absence of a clear slope and the large dis-
persion of points is an indication of the fact that differences in factor exposures do not
translate into systematic differences in average returns. As a result, the second-pass
regression in the 2PEM might not perform well in determining a stable pricing signal,
producing noisy and unreliable risk-premia estimates.

Regarding the estimation of risk premia, and in order to illustrate the differences in detail,
we examine two model specifications: one imposing the zero-beta rate to equal the T-bill
rate, following Fama and French (2015), and one allowing the zero-beta rate to be freel

estimated. These correspond to the restricted and unrestricted models shown in Table g
In order to study the significance of the estimates, we apply the inference results from Xiu
and Giglio (2021) for the 3PEM estimates and Shanken (1992) for the 2PEM. Xiu and
Giglio (2021) shows that §, converge to a normal distribution when the cross-sectional



and time-series dimensions converge to infinity simultaneously, n,T — o« and such that
T1/2n~! — 0 B We note that the asymptotic variance-covariance matrix of estimator of
the risk premia of the observable factors g; does not depend on the covariance matrix
of the residual u; or the estimation error of B. This is the main difference with the
classical two pass methodology and the Shanken’s correction, in which both B and X*
impact on the accuracy of the risk premia.?. The results indicate that the 3PEM yields
risk premium estimates that are more economically plausible and statistically robust
than those obtained using the traditional 2PEM. Notably, the market risk premium
becomes positive and statistically significant in the unrestricted specification under the
3PEM, whereas it is estimated to be negative under the 2PEM. This shift reinforces the
view that the 3SPEM produces estimates more consistent with asset pricing theory, which
predicts that the market factor should command a positive price of risk. Moreover, the
3PEM estimates closely align with the simple time-series averages of the factor returns,
suggesting that the method effectively captures the systematic component of risk premia
rather than noise arising from idiosyncratic variation. The presence of a positive market
premium, together with the close correspondence between the 3PEM estimates and the
time-series factor means, mirrors the findings of Xiu and Giglio (2021)) for the U.S. market
and is likewise confirmed here for the European equity market.

It is important to note that the alignment between the estimated and model-free risk
premia is less pronounced for the profitability factor (RMW). This factor appears partic-
ularly noisy, a point that will be examined in greater detail later. Interestingly, RMW
displays strong statistical significance under the 2PEM but not under the 3PEM. As
demonstrated in the following section, despite the apparent significance produced by the
2PEM, the estimated factor loadings (betas) on RMW are largely insignificant across
individual assets. Once these exposures are corrected using the 3PEM, the number of
stocks exhibiting statistically significant loadings on the RMW factor increases, indicat-
ing that the de-noising step embedded in the 3PEM facilitates a clearer and more reliable
identification of true factor exposures.

To assess the robustness of the estimated risk premia to potential model misspecifica-
tion, we perform additional estimations under three alternative specifications: the CAPM
the Fama—French three-factor model (FF3F), and the five-factor model (FF5). Table E
reports the estimated premia obtained using both the traditional two-pass estimation
method and the 3PEM under the restricted zero-beta setting. The results indicate that
the estimates of the risk premia from the 3PEM remain stable across all model specifi-
cations. Introducing or omitting observable factors does not materially alter the premia,
suggesting that the 3PEM is robust to model misspecification and insulated from omitted-
variable bias. This stability arises from the structure of the methodology. Indeed in the
third pass of estimation approach (see Section H) each observable factor is projected onto
the latent space extracted in the first step, ensuring that the contribution of unobserved
components is already accounted for. In contrast, the 2PEM estimates exhibit substantial
variation across the different model specifications.

However, while the 3PEM yields stable estimates with respect to the observable model
specification, it remains sensitive to the underlying latent structure. Table @ and Figure
Hpﬂlustrate how the estimated risk premia vary with the number of latent factors, p. The

4See Theorem 1 in Xiu and Giglio (2021))
5See, for example, Cochrane (2005), Shanken (1992) and Gagliardini et al. (2020)
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market premium remains positive and stable across all configurations, confirming its ro-
bustness and strong identification. By contrast, the estimated premia and their statistical
significance for the remaining factors depend on the chosen latent dimensionality.

Moreover, Figures E and H examine the stability of the estimated risk premia under
changes in sample composition, both across portfolios and over time. Specifically, Figure

assesses the sensitivity of the estimates to cross-sectional resampling, while Figure

presents results from a rolling-window analysis along the time-series dimension. In
both cases, the distributions of the estimated premia show that the traditional two-pass
approach yields wider and more dispersed estimates, indicating greater variability and
weaker robustness. This effect is particularly pronounced for the factors identified as
noisy under the 3PEM, such as RMW and CMA. Despite the presence of noise in certain
factors, the premia estimated using the 3SPEM remain substantially more stable under
both cross-sectional and time-series perturbations.

4.3 Denoised Fama-French Factors

As previously discussed, the SPEM was originally developed to estimate the risk premia
of non-tradable factors, but it is equally valid for tradable factors. This empirical work
shows that 3PEM can also be extended to detect noise in observable factors, in line
with the findings of Xiu and Giglio (2021). Moreover, it goes further by demonstrating
that 3PEM can be used to identify both weak and noisy factors in a chosen model
specification. In particular, this paper proposes obtaining a denoised version of tradable
factors, which can then be employed in subsequent empirical applications. The empirical
exercise carried out in this section focuses on the Fama and French Five-Factor model, but
the approach can be applied to a wide range of linear factor models. The literature has
already raised concerns regarding measurement error in the Fama and French factors. For
instance, Racicot et al. (2011) propose incorporating correction terms for factor exposures
to address the errors-in-variables problem. In contrast, this work advocates using the
denoised version of observable factors—an approach applicable to any tradable factor,
provided that the factor is priced.

Indeed, given any specification of a linear factor model, 3SPEM can be used: (i) to detect
whether the factor is weak, and if it is, to choose a model specification that excludes the
weak factors; (ii) if the factor is not weak, but it is measured with errors, that is, if it is
noisy, to obtain a denoised version of it.

In the 3PEM setting, a factor g; is weak if 7 — 0, or n = 0, or equivalently, if its
explanatory power with respect to a rotated version of latent factors is almost equal to
noise. Xiu and Giglio (2021)) propose to use the signal-to-noise ratio of each observable
factor, defined as follows:
2 =i
8l [Zvn/+zz]ii.

Its counterpart estimator is given by:
R = (13)

R§ gives information about how noisy g, is. In particular, if R§ is close to 1, then most of
the variation in g is due to latent factors, meaning that g is strong: the factor is pervasive
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and measured with little noise. Conversely, a value close to zero signals that most of the
variation in g; is idiosyncratic and not linked to the underlying factor space.

Besides the signal-to-noise ratio, Xiu and Giglio (2021)) also propose a formal statistical
test of factor strength. The Wald statistic is constructed to test the null hypothesis that
the observable factor is weak,

H()J':Th'] :“-:T]iﬁ:(),withiIl,...,d, (14)

against the alternative that it loads on at least one latent factor. The test is therefore
designed to detect whether g, has any systematic exposure to the latent factor space
recovered in the first step of the 3SPEM.

Thus, we compute the signal-to-noise ratios and formally test hypotheses on 1. The
evidence reported in Tables ff and  consistently points to the strength of the Fama—French
observable factors. The estimated signal-to-noise ratios ]éé are generally high, indicating
that most of the variation in these factors is captured by the latent components extracted
in the model. The market, SMB, and HML factors clearly behave as strong factors, while
RMW shows a comparatively lower value, suggesting a greater role for idiosyncratic noise.
The Wald test results reinforce this interpretation: for all five factors, the null hypothesis
of weakness is decisively rejected. This provides formal evidence that each observable
factor significantly loads on at least one latent component. Overall, the findings imply
that all Fama—French factors are statistically and economically non-weak (that is, they
are priced) in the European stock market, supporting the use of this model in subsequent
empirical analysis.

However, several factors appear to be affected by measurement error. As shown in Figure

, the variance decomposition indicates that although most of the variation in the observ-
able factors is captured by the latent components, some factors retain a non-negligible
proportion of idiosyncratic noise. In particular, the HML, RMW, and CMA European
factors exhibit measurement errors, with the noise component especially pronounced for
RMW and CMA. This suggests that these factors are less tightly connected to the latent
structure identified by the 3SPEM. Similar results can be observed in Figures § and [0,
where the actual and denoised factor observations are plotted against each other. Fac-
tors such as Mkt-RF, SMB, and display points that lie very close to the 45-degree line,
indicating that their variation is largely captured by the latent factor structure and that
measurement noise is limited. In contrast, the wider dispersion visible for RMW and,
to a lesser extent, for CMA signals a weaker relationship with the latent factors. Their
observations deviate more substantially from the 45-degree line and suggests a higher
noise component and lower signal strength within the 3PEM framework.

Moreover, Figures B and B also confirm that RMW is the noisiest factor in the set since it
displays greater estimation uncertainty in its corresponding risk premium. Notably, when
comparing the 2PEM and 3PEM estimates, the 3PEM produces a more stable, lower-
variance estimate of the RMW risk premium (which is also statistically significant under
2PEM). This contrast indicates that the 3PEM is more effective at absorbing spurious
variation generated by measurement error.

To further illustrate the ability of 3PEM to distinguish economically meaningful factors
from irrelevant ones, we introduce a purely spurious factor generated as random noise
and subject it to the same variance-decomposition and correlation analysis as the observ-
able Fama-French factors. The results in Figure [L1] and Table [ clearly show that this
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artificial factor is almost entirely orthogonal to the latent factor space, with correlations
that remain close to zero across all latent components. Consistent with this, the variance
decomposition assigns nearly all of its variation to the idiosyncratic noise component.
This behaviour demonstrates that the 3PEM is able to correctly classify the spurious
factor as non-informative since it is not aligned with any latent source of systematic risk.
Therefore, these findings reinforce the suggestion to use the 3PEM to filter out irrele-
vant or noisy factors and confirm its theoretical advantage in settings where observable
characteristics may include weak or non-priced components.

Hence, in the next part of analysis, we compute the denoised version of the observable fac-
tors according to Eq.([L1}) which allow us to separate the systematic component captured
by the latent structure from the idiosyncratic noise associated with each factor.

4.4 Risk Exposures and Expected Values at Stock-Level

Building on prior results, which confirmed that the five Fama-French factors are strong
in the European stock market and that the optimal latent dimension is six, the analysis
now extends to individual stocks. The objective is to investigate how the estimation of
factor loadings and expected returns varies when moving from portfolios to single assets,
and to compare the performance of raw versus denoised factors within the 2PEM and
3PEM frameworks.

In this section, the analysis applies the Fama-French five-factor (FF5) model, under the
restricted zero-beta rate assumption, to estimate factor loadings and expected returns for
2,327 European stocks using monthly data from January 2005 to May 2025. The study
aims to compare results under two distinct setups: (i) Raw factors: Stock-level betas
are estimated using the raw FF5 factors through time-series regressions, while the risk
premia are those computed at the portfolio level using the 2PEM framework; (ii) Denoised
factors: Stock-level betas are estimated using the denoised FF5 factors obtained via the
3PEM framework, together with risk premia computed at the portfolio level through
the 3PEM. In both setups, stock-level betas are estimated using ordinary least squares
(OLS) regressions corrected for heteroskedasticity and autocorrelation, with standard
errors adjusted for up to six lags. Expected stock returns are subsequently derived by
multiplying the estimated betas by the corresponding vector of risk premia. In the time-
series regressions used to estimate stock-level factor loadings, employing denoised factors
leads to a modest but consistent improvement in the model’s explanatory power. The
maximum adjusted R? rises from 0.777 to 0.812, while both the median and upper quartile
values also increase, indicating that the improvement in fit is widespread across stocks
rather than driven by a few outliers. Although the gain is moderate, it suggests that
denoising the factors reduces idiosyncratic noise in the time-series estimation of betas,
resulting in more stable and better-specified factor exposures.

Figure [12 shows the distributions of stock-level betas estimated using raw and denoised
factor observations. The results indicate that, for the market and size factors, the distri-
butions remain nearly identical, suggesting that these factors are already well captured
by their observable counterparts. In contrast, for HML, RMW, and CMA, the distribu-
tions widen after denoising, exhibiting greater cross-sectional dispersion in stock expo-
sures. This increased dispersion highlights that the denoising process uncovers meaning-
ful heterogeneity in how individual stocks load on these factors—heterogeneity that was
previously masked by noise. The effect is particularly pronounced for the profitability
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and investment factors, confirming that denoising identifies the true underlying expo-
sures rather than merely increasing estimation error. Overall, this evidence supports the
conclusion that denoising enhances the precision and interpretability of factor loadings,
especially for factors subject to measurement error.

Figure @ illustrates the differences in the distribution of expected monthly stock returns
across estimation procedures. The 2PEM approach yields a wider dispersion with heavier
tails, resulting in both overestimation and underestimation of expected returns compared
3PEM approach. These deviations are likely driven by noise contaminating the tradable
factors, which raises spurious covariances for some stocks while reducing true exposures
for others. Furthermore, the average Euclidean distance between the expected returns
estimated using the 2PEM approach and the returns obtained using denoised factors
and 3PEM risk premia is approximately 1.18% per stock. This implies that, on average,
the expected monthly returns differ by about one percentage point between the two
procedures. While this difference may seem modest, it can be significant in portfolio
allocation decisions and may accumulate over time, affecting investment performance
and the interpretation of risk—return trade-offs.

In certain cases, the discrepancies are substantially larger. For example, Figure @ high-
lights individual stocks to illustrate how expected values change when denoised factors
are used instead of raw factors. For stocks such as ATO-FR and IGR-GB, expected
returns estimated with raw factors are biased and substantially underestimated, partic-
ularly when the raw specification yields large negative values. After denoising, expected
returns adjust to more plausible levels, indicating that the 3PEM correction effectively
mitigates distortions caused by measurement error. For other stocks, such as ONE-AU
and HTRO-SE, the differences are smaller, reflecting that the impact of denoising de-
pends on the extent to which each asset’s exposure is affected by noise in the factor
structure.

5 Conclusions

This paper provides an empirical application of the Three-Pass Estimation Method in-
troduced by Xiu and Giglio (2021)) to the European equity market, with the objective of
estimating factor risk premia in the presence of omitted factors and measurement error.
Using a large panel of European portfolio and stock returns, and adopting the Fama—
French five-factor model as a benchmark specification, we show that traditional two-pass
procedures are highly sensitive to noise in observable factors and to model misspecifica-
tion. In contrast, the 3SPEM delivers risk-premium estimates that are both economically
plausible and statistically robust, even when the observable factor set is incomplete or
contaminated by measurement error.

Our empirical results highlight several key advantages of the 3PEM. First, the estimated
risk premia are stable across alternative observable model specifications and align closely
with the time-series averages of tradable factor returns, particularly for the market factor.
This stability reflects the ability of the method to account for omitted-variable bias by
conditioning on a latent factor space extracted from the cross-section of returns. Second,
the 3PEM provides a natural diagnostic framework to assess factor relevance. Through
signal-to-noise ratios and formal Wald tests, we show that all Fama-French factors are
priced in the European market, while simultaneously identifying substantial measurement
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error in some of them—most notably in the profitability and investment factors.

Furthermore, we demonstrate how the 3SPEM can be employed as a practical tool for
denoising tradable factors. By projecting observable factors onto the estimated latent
space, we obtain purified factor series that more accurately capture systematic sources
of risk. These denoised factors result in more precise and economically meaningful esti-
mates of stock-level factor loadings and expected returns. Notably, using denoised factors
reduces the dispersion and instability observed in the traditional two-pass framework, re-
vealing heterogeneity in factor exposures that would otherwise be obscured by noise.
The differences in expected returns across estimation procedures are economically sig-
nificant, suggesting that denoising factors can have important implications for portfolio
construction and asset allocation.

Overall, the 3PEM offers a consistent approach to factor selection, noise identification,
and the development of cleaner factor inputs for subsequent applications. Although
the analysis focuses on the Fama—French model and the European equity market, the
methodology is entirely flexible and can be applied to different factor structures, asset
classes and markets.
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Figures and Tables

Figure 1: Eigenvalue Structure and Information Criteria for Determining the Number of

Latent Factors
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Figure 2: Reconstruction of Demeaned Excess Returns Using PCA-Estimated Latent
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Figure 3: Cross-Sectional Distribution of First-Pass Estimated Betas within 2PEM
Framework
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Figure 4: Scatter Plots of Average Excess Returns Against First-Pass Betas for the Five
Fama-French Factors within 2PEM Framework
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Figure 5: Dynamics of Risk Premia under Shifts in the Latent Factor Space (Restricted
Case, p=6.)
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Note: Each boxplot shows the empirical distribution of factor risk premia obtained via cross-
sectional resampling, for the restricted zero-beta rate specification of the model. At each
iteration n =1,...,5000, a random subset of N = 100 portfolios is drawn, the two-pass and
three-pass estimators are computed. For the 3PEM, the latent dimension p is case-specific.
The boxplots illustrate the sensitivity of estimated risk premia to changes in the cross-sectional
composition of portfolios.

19



Figure 7: Distribution of Factor Risk Premia: Rolling Window over the Time-Series
Dimension
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Note: Each boxplot shows the time-series distribution of factor risk premia obtained through a
rolling-window estimation procedure. The model is estimated over overlapping windows of 300
months, shifting by one period at each step, for the restricted zero-beta rate specification. For
the 3PEM, p is case-specific. This approach captures the temporal dynamics of risk premia
and their stability across time.

Figure 8: Variance Decomposition for Observable Factors (Restricted case, p = 6)
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Figure 9: Actual versus Denoised Factor Observations
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Figure 11: Detection of a Spurious Factor via Variance Decomposition
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Figure 13: Distribution of Expected Stock Returns under 2PEM and 3PEM (FF5F

Framework)
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Figure 14: Illustrative Cases of Stock Excess Returns and Expected Values under Raw
and Denoised Factors
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Table 1: Correlation between Latent Factors and Fama—French Observable Factors

Latent factor Mkt—RF SMB HML RMW CMA

1st 0.9738 0.1378  0.2078 -0.2794 -0.2607
2nd -0.2116 0.9726  -0.0700  0.0484 -0.0208
3rd 0.0591 -0.0803 -0.9038 0.5720 -0.6950
4th -0.0240 0.0673  -0.2461 -0.1379 -0.3982
5th 0.0342 -0.1089  0.1692 -0.3348 -0.0551
6th 0.0277  -0.0549 -0.1197 0.0927  0.3206

Table 2: Risk Premia Results

Time-Series Avg 2PEM 3PEM
Factor Estimate Restricted Unrestricted Restricted Unrestricted
Mkt-RF 0.541 0.557 Hk —0.411 0.571  *** 0.371 *
SMB 0.018 0.054 0.050 0.013 0.015
HML 0.319 0.205 * 0.250 * 0.262 * 0.264 *
RMW 0.314 0.594  *¥* 0.529 *oA* 0.045 0.048
CMA 0.129 0.182 ** 0.174 * 0.212 *k 0.215 *k

Notes: Significance levels: * p < 0.10, ** p <0.05, *** p <0.01. All estimates refer to the restricted zero-beta rate
specification. Standard errors for the 2PEM estimates are computed using the Fama—MacBeth procedure with
Shanken correction. For the 3PEM, the latent structure is estimated with p=6. All risk premia are expressed in
percentage terms and are computed using simple monthly returns.

Table 3: Risk Premia Estimates under 3PEM and 2PEM for Different Model Specifica-
tions

CAPM FF3F Model FF5F Model

Factor Estimate SE Estimate SE Estimate SE

Model: 3PEM, restricted (p = 6)

Mkt-RF 0.571 0.260 ** 0.571 0.260 ** 0.571 0.260  **

SMB 0.013 0.103 0.013 0.103
HML 0.262 0.165 * 0.262 0.165 *
RMW 0.045 0.082
CMA 0.212 0.116  **

Model: 2PEM, restricted

Mkt-RF 0.571 0.248  ** 0.529 0.243  ** 0.557 0.258  **

SMB 0.044 0.105 0.054 0.111

HML 0.184 0.134 * 0.205 0.142 *
RMW 0.594 0.115  ***
CMA 0.182 0.099  **

Notes: Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01. All model setups refer to the restricted
zero-beta rate case with p = 6 latent factors. 2PEM standard errors are Fama—MacBeth estimates
adjusted using the Shanken correction. All risk premia are expressed in percentage terms and are
computed using simple monthly returns.
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Table 4: 3PEM Risk Premia at Changing the Number of Latent Factors

p=1

=2

p=3 p=4 p=5s =6 p=1 p=10 p=20
Factor ~ Est. SE Sig. Est. SE Sig. Hst. SE Sig. Est. SE Sig. Est. SE Sig. Est. SE Sig. Est. SE Sig. Est. SE Sig. Est. SE Sig
Mkt-RF  0.542 0.274 ** 0526 0258 ** 0528 0.259 ** 0570 0.259 ** 0568 0.260 ** 0571 0260 ** 0573 0261 ** 0581 0.262 ** 0577 0.262 **
SMB 0033 0021 * 0065 0.104 0.064  0.104 0.013 0.105 0.016 0.104 0.013 0.103 0.010 0.102 0.021 0.102 0.019 0.102
HML 0062 0043 * 0059 0040 * 0045 0.156 0275 0170 * 0270 0168 * 0262 0.165 * 0269 0165 * 0273 0165 ** 0303 0.171 **
RMW  -0.052 0.030 20.050 0.029 20.045 0.070 0.035 0.085 0.041 0.083 0.045 0.082 0.054 0.080 0.101 0.079 0201 0.083 **
CMA  -0.054 0.025 20.054 0,026 20.062 0.087 0195 0111 ** 0196 0013 ** 0212 0116 ** 0189 0124 * 018 0125 * 0.149 0.123

Notes: Significance levels: * p <0.10, ** p < 0.05, *** p <0.01. All estimates are based on the restricted zero-beta rate

specification. All risk premia are expressed in percentage terms and are computed using simple monthly returns.

Table 5: Estimated Signal-to-Noise Ratios (Iég) for Fama and French Factors

Factor R§ Interpretation
Mkt-Rf  0.999 Strong
SMB 0.991 Strong
HML 0.968 Strong
RMW 0.547 Moderate
CMA 0.816 Strong

Notes: The table reports the estimated signal-to-noise ratios 1?52, for the Fama and French five observ-
able factors. A value close to one indicates that the variation in the factor is largely explained by
latent components, implying a strong factor, whereas lower values suggest higher idiosyncratic noise.

Table 6: Row-wise Wald Tests for Weak Observable Factors (Fama and French Factors)

Factor Wit
MKT-RF 408,143.84
SMB 33,407.41
HML 7,880.41
RMW 303.48
CMA 1,159.24
Notes: The table reports the Wald test statistics for the null hypotheses Hy;: mjj =N = ... =1;5 =0,

testing whether each observable factor i is weak. 1n;; are the coefficients linking observable factor i to the
p =6 latent factors. The 5% critical value corresponds to the 95% quantile of the 162 distribution, equal
to 12.5916. For all factors, the associated p-values are extremely small (numerically equal to zero due to

machine precision), implying a strong rejection of the null hypothesis and indicating that all observable
factors are statistically non-weak.

Table 7: Correlation Between Latent Factors and Observable Factors, Including a Spuri-

ous Factor

Latent factor Mkt—-RF SMB HML RMW CMA  Spurious
1st 0.9738 0.1378  0.2078 -0.2794 -0.2607  -0.0489
2nd -0.2116 0.9726  -0.0700 0.0484 -0.0208 -0.1318
3rd 0.0591 -0.0803 -0.9038 0.5720 -0.6950  -0.0062
4th -0.0240  0.0673 -0.2461 -0.1379 -0.3982 0.0893
5th 0.0342 -0.1089  0.1692 -0.3348 -0.0551 0.0581
6th 0.0277  -0.0549 -0.1197 0.0927  0.3206 0.0882
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