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Abstract

We analyse the effects on industry structure of non strategic learn-
ing by doing with spillovers in a differentiated oligopoly à la Bertrand.
The dynamics is driven by a non linear learning curve. Conditions
for shakeouts are analysed, focusing on the key factors affecting them.
Policy interventions to limit shakeouts are suggested.
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Shakeouts.
JEL Classification: L11, L13, O31.

1



1 Introduction

The economic literature provides empirical evidence of how learning by doing
and spillovers shape the industrial structure (Zimmerman (1982), Lieberman
(1989), Foster and Rosenzweig (1995)). Consequently, the analysis of the
effects of learning by doing and spillovers has emerged as an important re-
search topic for consideration of industrial policies. In this paper, following
Jin, Perota-Pena and Troege (2004), we present and characterize the dy-
namic behaviour of a simple model representing a differentiated oligopoly
à la Bertrand whose dynamics is driven by non strategic learning by doing
and spillovers. The model of Jin et al. has the merit of specifying with sur-
prisingly simple equations the dynamic evolution of this industry. However,
the learning process is very stylised. They assume a linear learning curve
with spillovers. This assumption does not allow to consider the diminishing
returns to scale which typically characterise the learning process and more-
over does not identify the crucial role of the asymptotic value of the cost
function in the dynamic outcome of the system. We depart from the paper
by Jin, Perota-Pena and Troege (2004) in two ways. First, we propose a
nonlinear dynamic cost function that enable us to find rigorously a positive
stationary point as the asymptotic outcome of the market evolution. Second,
the dynamic cost function has a richer structure in the sense that considers
the rate of cost decreasing, the asymptotic value of marginal cost function
and the initial cost value. This richer specification of the learning curve
allows us to determine rigorously all the key factors affecting the industry
evolution. Particularly, we find a short cut condition for the occurrence of
shakeouts.

The structure of the paper is as follows. In section 2 we recall the
Jin, Perota-Pena and Troege model. In section 3, we analyse the dynamic
outcome of the system assuming a non linear learning curve with spillovers.

2 The Jin, Perota-Pena and Troege Model

For the convenience of the reader, we recall the demand function by Jin,
Perota-Pena and Troege model (2004). The setting is characterised by n
firms competing à la Bertrand in a differentiated market with n products
(x1, ..., xn) and a numeraire good (x0). As usual, the price of the numeraire
good is normalised to 1. Firm i demand function in each period t is obtained
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solving the following consumer maximisation problem:

max
xit
{x0t +A

nX
i=1

xit − 0.5δ
nX
i=1

x2it − rδ
nX
i=1

xit

nX
j 6=i
xjt}

s.t.
nX
i=1

pitxit + x0t = y,

where A, δ > 0, xit, pit denote respectively firm i’s output and price in
period t, y the representative consumer income, 0 < r < 1 the degree of
substitutability between goods. The extreme cases of perfect substitutability
between goods (r = 1) and complete independence (r = 0) are excluded.
Each firm thus in each period is facing the demand function:

xit =
A

[1 + (n− 1)r]δ −
pit

(1− r)δ +
r

(1− r)[1 + (n− 1)r]δ
nX
j 6=i
pjt.

Each oligopolist is playing a Bertrand game in each period, choosing pit in
order to maximise the current profit: Πit = xit(pit− cit) where cit is firm i’s
marginal cost.

Solving the oligopolist first order conditions, the equilibrium price is
obtained:

pit =
(1− r)A

2 + (n− 3)r +
[1 + (n− 2)r]cit
2 + (2n− 3)r +

+
r[1 + (n− 2)r]

[2 + (n− 3)r][2 + (2n− 3)r]
nX
j=1

cjt.

Substituting this equilibrium value in the demand function, the equilibrium
output in each period is given by:

xit = φA+
λ− φ

n

nX
j=1

cjt − λcit, (1)

where φ = [1 + (n− 2)r]/{[2 + (n− 3)r][1 + (n− 1)r]δ} and λ = [1 + (n−
2)r]{2 + (n− 2)r]/{[2 + (2n− 3)r](1− r)δ}.
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3 Non Linear Learning Curve With Spillovers

In (1), firm’s current output is linked to the level of current costs. To
describe the dynamic evolution of the system, another equation linking the
level of current costs to the previous output is required. The learning curve
provides this additional equation. In contrast with Jin et al., we are not
assuming a linear relation between current cost and own or total industry
output in the previous period, but a more complex cost dynamic behaviour.
The learning curve that we are using in this work is given by:

cit = cit−1(cio + aixit−1 + bi
nX
j=1

xjt−1)−Di + cmini , (2)

where Di is the rate of cost decreasing, c
min
i is the asymptotic value of

the marginal cost function, cio is the initial marginal cost value, ai and bi
denote respectively the intensity of the learning by doing and of the spillover
effect. We propose this functional dependence since it is able to describe the
most general non linear behaviour, allowing for diminishing returns and
asymptotic value of the cost function.

Industry dynamics is given by equations (2) and (1). Plugging (2) in
(1), we get the following system of n difference equations:

cit = cit−1(cio +Ψi +Ωi
nX
j=1

cjt−1 − λaicit−1)−Di + cmini i = 1, 2, ..., n,

(3)

where Ψi = φA(ai + bin) and Ωi = [ai(
λ−φ
n ) − biφ]. Let us define c0 =

[c10, ..., cn0] as the initial condition vector.

Proposition 1 If each cmini is sufficiently small, the dynamic system (3)
exhibits two equilibria given by: c∗ = [c∗1, ..., c∗n] and c∗∗ = [c∗∗1 , ..., c∗∗n ] such
that c∗i < c0i < c∗∗i , ∀i = 1, ..n; with c∗i = 0 if cmini = 0 and c∗i > cmini if
cmini > 0.

Proof. The LHS of each equation of (3) is the 45◦ line. The RHS is a
continuous convex increasing function with cmini as vertical intercept and a
vertical positive asymptote. If cmini is such small that the imagine of cio is
less then cio, since c

min
i < c0, by the continuity of the function there must

be two fixed points (c∗, c∗∗) and the initial condition vector must be always

4



between the two fixed point vectors. If cmini = 0, one of the zeros of the
system coincides with the origin.

Proposition 2 Under the conditions stated in Proposition 1, for each cio
the dynamic system (3) converges to the stationary state c∗.

Proof. Each equation defines a sequence of maps converging to an
asymptotic map with the two equilibria c∗, c∗∗. Since (3) is a monotone
decreasing bounded sequence, then it converges to the lower stationary state
c∗.

Proposition 3 In c∗, increasing levels of the parameters ai, bi, Di and A
decrease the value of the stationary state c∗, while increasing levels of cmini

decrease the value of c∗.

Proof. A graphical proof is given for this proposition. As previously
said, c∗ is given by the intersection of the 45◦ line and the map defined by
the system (3). Increasing levels of the cmini increase the positive value of
the vertical intercept. Increasing levels of ai, bi, Di and A decrease the value
of c∗.

In the following figures (1-3), we present simulations of the system dy-
namics in the duopoly case, assuming different asymptotic values of firm
marginal cost (firm 2 is always the advantaged firm). We set the demand
parameters as A = 10, λ = 0.5 and φ = 0.3. Changes in the values of these
demand parameters do not affect qualitatively the results. Figure 1 repre-
sents the effect of different rates of cost decreasing (Di) on the long run cost
behaviour. We show the case of Di = 0.3 and Di = 1 with cmin1 = 1.5 for
the less advantaged firm and cmin2 = 0.5 for the other firm. An increase in
Di lowers the cost stationary value for both firms, even if the level of the
cost asymptotic value is never reached. Whichever is the value of Di, the
cost level of the stationary state is bigger than its asymptotic value.

Figures 2 and 3 represent respectively the effect of different learning by
doing and spillover parameters on the dynamic behaviour of the system.
Increasing levels of both parameters lower the cost in each period. In our
model, thus, spillovers are definitely beneficial to the system. Even with a
more complex learning curve, we confirm the results of beneficial spillover
effects obtained with non strategic learning and linear learning curves (see
Jin et al. (2004)). Since also in our model learning is passive (it is driven
by quantity decision of the previous period), the usual trade-off between
incentives and cost reduction of strategic learning models does not occur
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min=1.5 D1=0.3

c1
min=1.5 D1=1

c2
min=0.5 D2=1

c2
min=0.5 D2=0.3

Figure 1: The effect of different rates of cost decreasing on the value of the
stationary state c∗ (firm 2 advantaged).

t

0

4.3

c1
min=2 a1=0.2

c1
min=2 a1=0.99

c2
min=1 a2=0.2

c2
min=1 a2=0.99

c1,c2

Figure 2: The effect of the different own learning by doing coefficients on
the level of the stationary state c∗ (firm 2 advantaged).
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c1
min=2 b1=0.03

tc1
min=2 b1=0.98

c2
min=0.3 b2=0.03

c2
min=0.3 b2=0.98

c1,c20

3.5

Figure 3: The effect of different spillover parameters on the stationary level
of c∗ (firm 2 advantaged).

(see, for example, Fudenberg and Tirole (1983) or Ghemawat and Spence
(1985)). In order to improve welfare, government should encourage informa-
tion exchange between firms. Specifically, it should promote the formation
of technological consortia. A technological sharing agreement will improve
the efficiency of the production process of both firms and will reduce costs.
Also the learning parameter ai has a straightforward effect on dynamics
behaviour. Costs decrease as ai increases. In contrast with the result of
the linear cost case, the effect of the learning-by-doing parameter does not
seem to have difficult interpretation in our case. Whichever is the entity of
the spillover effect, the learning-by-doing coefficient will ever improve firm
performance.

Finally, we analyse the effect of learning by doing and spillover effects on
industry shakeouts. The index c =

Pn
j c
∗
j/nmeasures the average stationary

cost level of the industry. It synthesises the level of efficiency of the system.
Let us define µ = φ

λ and ξ = (λ−φ)
λ .

Proposition 4 If c∗i < µA+ ξc shakeouts never occur in the system.

Proof. Firm i’s market share (si) is given by:

si =
φA+ (λ−φn )

Pn
j c
∗
j − λc∗i

nφA− φ
Pn
j c
∗
j
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Figure 4: Industry dynamics under different cost gaps

Since (nφA− φ
Pn
j c
∗
j )> 0, si > 0 if c

∗
i < µA+ ξc.

Two factors influence the occurrence of shakeouts in the system: market
size and the general level of efficiency of the system. Higher the size of the
market (higher value of A), lower the probability that the firm exits the
market. Indeed, learning-by-doing activities and spillover transmissions are
magnified and amplified with large markets. As far as the system efficiency is
concerned, lower levels of c increase the probability of shakeouts. More effi-
cient the system, lower the probability for the less advantaged firm to survive
in the competition process. Information transmission should be encouraged
by government intervention. Increasing values of the learning-by-doing and
the spillover effect increase the efficiency of the single firm relatively to the
others, reducing the possibility of concentration in the system.

Corollary 5 A market converges to equal shares if cmini = 0, i = 1, ..., n
whichever are the values of the other parameters in the system.

Proof. The proof is straightforward. Since

si =
φA+ (λ−φn )

Pn
j c
∗
j − λc∗i

nφA− φ
Pn
j c
∗
j
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if cmini = 0 then c∗i = 0 and so si = 1/n.
In figure 4, we show how the firm cost comparative condition affects the

industry evolution of a duopoly in which the source of asymmetry is only
due to the difference in the asymptotic cost value. We observe that if one
firm is in a quite favorable cost condition with respect to the other (cost gap
is sufficiently great) only the most efficient firm survives (firm 2). If, instead,
this gap is relatively small, shakeout does not occur. In the case that the
asymptotic cost conditions are equal, all firms survive in the market with
equal shares. This result holds whichever is the magnitude of the spillover
effect, the learning-by-doing parameters, the market size. Qualitatively, the
same market evolution occurs when the entity of the cost gap is due to
asymmetries in other parameters affecting the efficiency of firms.

4 Conclusion

We analysed the dynamic behaviour of a differentiated oligopoly à la Bertrand
with a non linear learning curve and spillovers. The learning process and
the spillovers are non strategic. The non linearity of the learning curve
contributes to clarify the role of the cost asymptotic value on the industry
structure. We show the conditions for the system to exhibit two fixed points.
The industry approaches the lower stable equilibrium, whichever are the ini-
tial conditions. We study the key factors affecting the level of this stationary
point. We show that learning by doing activities, transmission of informa-
tion among firms, higher rate of cost decreasing improve firm performance.
Moreover, we analyse the conditions for the occurrence of shakeouts in the
system. These conditions are strictly connected to the market size and the
comparative cost condition of the single firm in the market. Information
exchange is beneficial to the system since it prevents market concentration
by reducing the probability of shakeouts. We suggest that policy prescrip-
tions such as technological sharing agreements should be encouraged and
welcomed.
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