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Abstract. We propose a repeated oligopoly game where quantity setting firms have incomplete
knowledge of the demand function of the market in which they operate. At each time step they
solve a profit maximization problem by using a subjective approximation of the demand function
based on a local estimate its partial derivative, computed at the current values of prices and outputs,
obtained through market experiments. At each time step they extrapolate such local approximation
by assuming a linear demand function and ignoring the effects of the competitors’ outputs. Despite
a so rough approximation, that we call "Local Monopolistic Approximation" (LMA), the repeated
game may converge to a Nash equilibrium of the true oligopoly game, i.e. the game played under
the assumption of full information. An explicit form of the dynamical system that describes the
time evolution of oligopoly games with LMA is given for arbitrary differentiable demand functions,
provided that the cost functions are linear or quadratic. Sufficient conditions for the local stability of
Nash Equilibria are given. In the particular case of an isoelastic demand function, we show that the
repeated game based on LMA always converges to a Nash equilibrium, both with linear and quadratic
cost functions. This stability result is compared with "best reply" dynamics, obtained under the
assumption of isoelastic demand (fully known by the players) and linear costs.

Key words: Oligopoly games, bounded rationality, subjective demand, Nash Equilibrium, dy-
namical systems, stability.

1 Introduction

The notion of Nash equilibrium in an oligopoly game is based on the assumption that each firm knows
the market where it operates and knows what the other firms decide to do. In particular, each firm
is assumed to know the entire demand curve for the good it produces. It is more likely, however, that
real firms only use some local estimate of the demand function, obtained through market experiments,
when they compute their strategic variables as solutions of a profit maximization problem. Some
authors use terms like “estimated” or “perceived” or “subjective” demand function, in order to say
that the demand function that the firms use to solve their profit maximization problem is obtained
through market experiments or by some "rule of thumb” (Baumol and Quandt, 1964, Silvestre, 1977,

Bonanno and Zeeman, 1985).



Many authors have recently investigated the possible outcomes of repeated oligopoly games where
the players have a misspecified knowledge of the demand function. Leonard and Nishimura (1999)
examined discrete time dynamic duopolies and illustrated how the steady states (that are no longer
Nash equilibria of the true game) change their stability properties as the result of the incorrect as-
sessment of the demand function, the misspecification being due to a multiplicative scale factor. This
model has been further generalized in Chiarella and Szidarovszky (2003) in which the firms may also
misspecify the shape of the demand function and not only its scale as it was assumed in the origi-
nal model of Leonard and Nishimura. Bischi, Chiarella and Kopel (2004) propose a duopoly model
where the players lack knowledge of the market demand and, differently from the model of Léonard
and Nishimura, the assumption of decreasing reaction functions is relaxed. This implies that new
steady states (that are not Nash Equilibria) may be created, when (one or both) players over- or
underestimate the demand.

Interesting cases are obtained when an oligopoly game, repeatedly played by boundedly rational
players that do not know the demand function, converges in the long run to a Nash equilibrium,
i.e. to the same equilibrium that is reached in one-shot under full rationality. This may be seen as
an evolutionary explanation of the outcome of a Nash equilibrium, and in the case of several Nash
equilibria the repeated game may act as an equilibrium selection device. Of course, the more refined
the decision-making process, the more expensive it is likely to be, and therefore, especially when a
(single) decision is not of crucial importance, no more than an approximate solution may be justified.
Some authors denote ”optimally imperfect decisions” the decisions based on simple and inexpensive
computations, wellsuited for frequent repetition (on this point see Baumol and Quandt, 1964).

This approach has been recently developed in a paper by Tuinstra (2004), where the subjective
demand framework is used in a discrete-time price adjustment process. Following the seminal papers by
Negishi (1961), Tuinstra assumes that at each time step price setting firms use subjective linear demand
functions that only depends upon their own price and pass through the price-quantity combinations of
the current state of the economy. Moreover, as in Silvestre (1977), the slope of the subjective demand
curve is assumed to coincide with the slope of the objective (generally nonlinear) demand curve. The
firms observe the amount the current price and they compute the slope of the true demand curve at that
price. With this information they estimate a linear demand curve, and by using this estimation they
set a new optimal price. In the case of linear cost functions, Tuinstra obtains an explicit discrete time
dynamical system to describe the price adjustment process, and investigates its dynamical properties.
He also gives sufficient conditions for stability, that involve cross-price effects and the curvature of
the demand curve, and by using particular nonlinear demand functions, associated with linear cost
functions, he shows the occurrence of non convergent trajectories and complicated dynamics.

In this paper we propose an similar adjustment mechanism for a repeated oligopoly game where
quantity-setting firms solve a profit maximization problem by using a linear approximation of the
demand function. Like in Tuinstra (2004) this approximation is based on the estimate of the par-

tial derivative of the demand function computed in the current state of the market and ignoring the



presence of the competitors. No efforts are made by the players to learn the true (and generally non
linear) demand function®. Firms are just assumed to perform market experiments in a neighborhood
of the current state of the market. Through these experiments each firm is assumed to get a cor-
rect estimate of the partial derivative of the demand function with respect to its own quantity (or
price) variations. This estimate is then used to obtain a linear approximation (and extrapolation) of
the demand function without any guess about the influence of the competitors (i.e. a monopolistic
approximation). However, even if the firms solve their profit maximization problems on the basis of
such a rough approximation, that we call "local monopolistic approximation" (LMA henceforth) the
repeated game may converge to a Nash equilibrium of the true oligopoly game, i.e. the game played
under the assumption of full information. In other words, the repeated game with LMA has the same
(Nash) equilibria as the so called "best reply" dynamics, and it is interesting to compare the stability
properties of a Nash equilibria under these two different adjustment mechanisms, based on different
degrees of rationality and information sets. In order to make such a comparison, it is necessary to find
suitable demand and cost functions that allow us to get an explicit discrete dynamical system. As we
shall see, this is easily obtained for an arbitrary differentiable demand function, not only in the case of
linear cost functions (like in the case considered by Tuinstra (2004)) but also in the case of quadratic
cost functions. Instead, explicit dynamical systems that represent best reply dynamics are not easily
obtained, as an explicit analytic expression of the reaction functions is rarely found. An exception is
the Cournot oligopoly game with best reply obtained by using linear costs and an isoelastic demand
function, as proposed by Puu (1991). So, in the case of homogeneous products and isoelastic demand
function we can compare the stability of the Nash equilibrium under these two different kinds of profit
maximizing output adjustment mechanism, the LMA and the best reply. In fact, the properties of
best reply dynamics of Cournot duopoly games has been extensively studied by Puu (1991, 1996) see
also Puu (2000) who showed the trajectories may not converge to the Cournot-Nash equilibrium and
the outcome of complex trajectories is possible. In this paper we show that the repeated game based
on LMA with an isoelastic demand function always converges to a Nash equilibrium. This implies
that in this case the adjustment mechanism with LMA is more stable than the "best reply" dynamics,
obtained under the assumption of full knowledge of the demand. In other words, in this case less ra-
tionality (and less information) leads to more stability. However, as we shall see, the stability ranking
between these two different adjustment mechanisms, is not so immediate when we also consider the
basins of attraction of the Nash equilibrium when it is stable under both the dynamic processes.

The paper is organized as follows. In section 2 we recall the setup and the notations of Cournot
oligopoly games with best reply dynamics, and we briefly recall the results obtained by Puu (1991)
for the Cournot duopoly with best reply and isoelastic demand function. In section 3 we introduce

' A model with a learning mechanism has recently been proposed by Bischi, Sbragia and Szidarovszky (2004). They
consider Cournot oligopolies where players know that the demand and cost functions are linear, but while the firms are
assumed to know the cost functions, they misspecify the slope of the demand function, and they try to learn the true
slope on the basis of the discrepancy they observe, at any repetition of the game, between the expected price and the
realized one.



the adjustment mechanism based on LMA, we argue about the information set required to perform
it, and we give some general stability conditions. In section 4 we study the existence and stability of
Nash equilibrium under LMA with an isoelastic demand function and linear cost functions, and we
compare these results with those obtained under the best reply dynamics applied to the same economic
context. In section 5 we consider an aggregate model that describes the dynamics of the total output
of the oligopoly system when homogeneous products, linear costs and isoelastic demand functions are
considered. In section 6 we prove the stability of the Nash equilibrium under the LMA dynamics with
isoelastic demand and quadratic costs. Section 7 concludes and indicates some possible directions and

developments of future researches.

2 Best Reply dynamics

Let us consider an industry where n firms, indexed by 7 = 1,...,n, produce differentiated products,
with production levels ¢;, i = 1, ..., n, respectively. Strategic interaction arises because the demanded

quantity of a given product depends on all the prices according to the demand functions

qi :DZ (piap—i)a Z.:17"'777’ (1)

where p_; represents the set of prices p; with j # i. If C;(g;) denotes the cost function of producer ¢,

then the profit at time period ¢ is
mi(t) = pi(t)ai(t) — Ci (:(t)) (2)

The producers are assumed to be price takers and quantity setting, i.e. at each time ¢ they decide the

next-period productions ¢;(t + 1) by maximizing the profit expected at the next period ¢ + 1:
qi(t +1) = argmax (¢ + 1) = arg max [p; (t + 1)g; — Ci ()] 3)

where pf (¢t + 1) represents the price expected by player i for period (¢ 4 1). In the traditional Cournot
game players are assumed to know the demand function, so each player i expresses the expected price

p$(t + 1) by using the inverse demand functions
pit+1) = ' (a(t +1), 0% (E+1)) (4)

where ¢, (t + 1) represents the output decisions of other players as expected by player i.

The Cournot optimization problem becomes:
g;(t+1) = arg rr;fj}X[fi (¢,q% t+1)) g — Ci (q4)] (5)
In the simplest (and lucky) cases one can uniquely express ¢; as functions of ¢°,
gi(t+1) =7 (¢¢;(t+1)) (6)
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where r; are the reaction functions. The Nash equilibria correspond to the fixed points of the map (6),
i.e. are located at the intersections of the reaction curves. If players correctly forecast the competitors’
decisions, i.e. ¢¢; (t+1) = ¢—; (t + 1), then the Nash equilibria can be directly computed, in one-shot.
Instead, in a bounded rationality setting, players may not know beforehand the competitors’ choices,
and consequently they formulate some reasonable forecast, on the basis of their information set. The
simplest assumption, proposed by Cournot (1838), is that of naive expectations, ¢¢,; (t+1) = q—; (t),
i.e. each firm expects that the production of the other firms will remain the same as in current period?.

Under this assumption (6) gives rise to a discrete-time dynamical system (Best Reply Dynamics)

qi(t+1) =7 (qi(t)) (7)

Every Nash equilibrium is also an equilibrium of the Best Reply Dynamics, because the intersections
of the reaction curves are the fixed points of (7). However, such equilibria are not reached in one shot.
They may be reached asymptotically, in the long run, if they are stable under the best reply dynamics.
This may be seen as an evolutionary explanation of the outcome of a Nash equilibrium, and in the case
of several Nash equilibria the repeated game (7) may act as an equilibrium selection device. However,
the dynamical system (7) may not converge to a Nash equilibrium, and it may exhibit asymptotic
convergence to periodic or chaotic attractors (see e.g. Rand, 1978, Dana and Montrucchio, 1986, Puu,
1991, 1998, Bischi, Mammana and Gardini, 2000). In particular, Puu (1991) considered a Cournot

duopoly game with an isoelastic demand (with unitary elasticity)

1
q1+ q2

p=flq,q)= (8)

together with linear cost functions C; = ¢;q;, i = 1,2. He proved that unimodal reaction functions
are obtained, and the best reply dynamics can give rise to complex trajectories that do not converge

to a Nash equilibrium. These reaction functions can be easily obtained by solving the optimization

problem: .
i
gi(t +1) = arg max P T Ciqi
whose first order conditions become
¢,(t+1)
[gi + ¢°, (¢ + )]
from which ¢: is obtained as a solution of a second degree algebraic equation, namely ¢; = —¢%; £

q¢/ci. Only the solution with 74" represents a maximum, hence the dynamical system obtained

20ther kinds of expectations mechanisms can be used, such as adaptive expectations, see e.g. Szidarovszky and
Okuguchi (1988), Bischi and Kopel (2001).



by Puu assuming Cournot expectations is given by

e+ 1) = —lt) [ 2 )
a2t +1) = —qa(t) + qlc(;)

A unique Nash equilibrium exists, given by

* * C2 C1
qQ = (d;6) = <(01 o @ +02)2> (10)
whose stability properties are given by Puu (1991) in terms of the ratio between the marginal costs
c1/ce. First of all, feasible (i.e. bounded and non negative) trajectories of the best reply dynamics
are obtained provided that ci/cp € [4/25,25/4] = [0.16,6.25]. Moreover, the Nash equilibrium (10)
is stable if and only if ¢;/cy € (3 — 2v/2,3 4+ 2v/2) ~ (0.17,5.83). If ¢;/cy exits this interval then the
Nash equilibrium loses stability via a period doubling bifurcation. Indeed, Puu (1991) shows that if
c1/cy falls outside the interval (3 — 2v/2,3 + 21/2) then the asymptotic dynamics may converge to
periodic cycles of even exhibit chaotic motion around the Nash equilibrium, as shown in fig. 1a, where
a chaotic trajectory is shown, together with the reaction curves, obtained with ¢c; =1 and c2 = 0.161.
In fig. 1b, obtained with ¢; = 1 and ¢ = 0.7, the stable equilibrium (10) is shown, together with
its basin of attraction, represented by the white region, whereas the grey region represent the set of

initial conditions that generate unfeasible trajectories.

Insert fig. 1 a,b

3 The model with local and monopolistic approximation

The best reply dynamics are obtained under the assumptions that, at each time, the firms have a global
knowledge of the demand function and know their current production and the current production of
the competitors as well, but they are not able to get a correct forecast of the competitors’ choices
for the next period. In this work we also consider another kind of information lack: We relax the
assumption that each firm knows the corresponding demand function. However we assume that,
through brief market experiments, at any time period each firm is able to get a correct estimate of
the partial derivative

fite) = L) (11)

Then, each firm 7 uses this estimate to obtain a “rule of thumb” computation of the expected price

pEt+1) = pi(t) + FI(E) (@it + 1) — ai(t)) (12)



where p;(t) = £ (q1(t), ..., gn (t)) and fi(t) is defined in (11).

Of course, the approximation (12) is easier to be obtained than a global knowledge of the demand
function (that involves values of py or ¢ that may be very different from the current ones). Indeed,
the estimate of f(t) at time ¢t may be obtained by computing the effects of small price or quantity

variations. For example, introducing at time ¢ a small output variation Agq:, firm 7 can compute

fHai(t) + Agi, q-i(t) = ' (qi(t), q-i (1))
Ag;

(13)

and we assume that this allow firm i to get a correct estimate of f/(t). It is worth to note that an

estimate of f/(¢) can also be obtained through small price variations Ap;, that allow firm i to compute

Di(pi(t) + Api, p—i(t)) — Di(pi(t), p—i(t))
Ap;

(14)

and consequently a correct estimate of the partial derivative Di(t), from which f{(t) = 1/Di(t) can
be computed.

Notice that (12) is not a linear approximation of fi. In fact, as firm i cannot obtain an estimate of
f;(t), with j # 4, it simply neglects the influence of the competitor’s production in the computation of
the expected price. Of course, this is a very rough approximation. However, many authors claim that
this is not far from reality, see e.g. Kirman (1975) on this point. Moreover, as we shall see below, even
if the firms neglect the influence of competitors’ outputs in the computation of the expected price, the
dynamic process generated by such a repeated game can converge to the same equilibria as the best
reply dynamics.

In fact, if the producer i uses (12) to compute the expected price, then the first order conditions
for the optimization problem (3) become

E ) [ai(t+1) (pi (8) + i) (@t +1) — q:(2)) = Ci(@(t+1))] =0 i=1,...n

pi (8) +2f(Da(t +1) = fi(Da®) - Cilait+1)) =0 i=1,.,n (15)

where, again, p;(t) = f* (q1(t), ..., qn (t)) and C; denoted the derivative of the cost function.
Notice that, in order to compute ¢;(t + 1), at time ¢ firm ¢ needs the following information set:

(i1) Its current output ¢;(t);
(i2) The current price of its good, p;(t);
(i3) The partial derivative f!(t);

(i4) Its own cost function Cj(g;).



The following proposition states that even if players use a linear and monopolistic approximation
of the demand function, the equilibria are the same as in the oligopoly game with full information.
So, even for oligopoly games where the firms use a so rough approximations of the inverse demand

functions, the steady states are the Nash equilibria of the true game.

Proposition 1. The steady states of the optimization problem with local monopolistic approxima-
tion (15) are the Nash equilibria of the Cournot game (5) with best reply and perfect knowledge of the

inverse demand function.

A proof of this proposition is given in the Appendix.

A study of the dynamic properties of the adjustment process (15), based on the local monopolistic
approximation of the demand function, is possible if the implicit equation (15) can be written in the
form of an explicit discrete time dynamical system, i.e. if one can uniquely compute ¢;(t+ 1) from the
knowledge the state variables at time ¢. This can be obtained if we consider suitable cost functions,
such as the following two commonly used cost functions

i) Linear cost functions

Ci = cio +ciqi,  cio = 0,¢; > 0. (16)
With this cost function we have C;(g;(t + 1)) = ¢; and (15) gives
1 ci —pi(t) .

(1) = —qi(t) + =20 —1,.., 17

alt+1) = 500 + 23 i=1,.n (1)

where, p;(t) = f (q1(t), ..., qn (t)) and fi(t) is defined in (11).
ii) Quadratic cost function:

Ci = Cim + ¢iqi®,  cim > 0,¢ >0 (18)
With this cost function we have C;(g;(t + 1)) = 2¢iq;(t + 1), and (15) gives

qi t)ff:(t) — pi(t)
2 [fi(t) — ci]

where, again, p;(t) = f*(qi(t),...,qn (t)) and fi(t) is defined in (11).
Notice that in the price adjustment process proposed by Tuinstra (2004) only the case of linear cost

gi(t+1)=

i=1,...n (19)

functions gives rise to an explicit dynamical system. Instead, in our quantity-setting framework we can
obtain an explicit expression of the dynamical system with quadratic costs. This may be important in
several applications. Just to quote an important case, in fishery models the harvesting costs depend
on the square of harvested quantity (see Clark (1990), Szidarovszky and Okuguchi (1998), where this
quadratic cost function is derived from a “production function” of the Cobb-Douglas type with fishing
effort and fish stock as the two inputs).

So, if we consider linear or quadratic cost functions and we assume several different kinds of

nonlinear differentiable demand functions, the adjustment mechanisms (17) and (19) allow us to



study several different dynamical systems obtained by using different nonlinear demand functions. It
is interesting obtain some ranking about the stability properties of the different models, based on the
comparison of the regions of stability of Nash equilibria in the space of the parameters, or on the
comparison of their basins of attraction, under different assumptions on the demand functions.

The following propositions, proved in the Appendix, gives sufficient conditions for the stability of
a Nash equilibrium under the two adjustment dynamics (17) and (19) respectively.

Proposition 2. Let q* be a Nash equilibrium for the oligopoly game defined by (5) with a linear
cost function (16), and let the inverse demand functions f'(qi,...,qn) be twice differentiable. Then q*
is a steady state of (17) and a sufficient condition for local stability of q* under (17) is

@ | fi(a®)] + Z |fi(a®) + g fi(ah)] < 2| £ ()] foralli=1,..,n (20)
i

. *\ 82 T
where fi(a") = 1ohe
Proposition 3. Let q* be a Nash equilibrium for the oligopoly game defined by (5) with a quadratic
cost function (18), and let the inverse demand functions f*(qi,...,qn) be twice differentiable. Then q*
is a steady state of (19) and a sufficient condition for local stability of q* under (19) is

g £ + D @) + g fla)| <2|fi(a) ] foralli=1,..,n (21)
JFi
where Z’J(q*) = 8‘?;5;

These stability conditions are similar to the one given in Tuinstra (2004), where some intuitive in-
terpretation is given in terms of diagonal dominance in the matrix of substitution effects and curvature
of the demand functions.

In the following we shall focus our attention on the comparison between the stability properties
of the Nash equilibria under the two different kinds of adjustment processes: the best reply dynamics
and the dynamics with LMA. In order to do such a comparison both these dynamic adjustments must
be expressed as explicit dynamical systems. As we have argued above, in the case of LMA this can be
easily obtained for every differentiable demand function, provided that the cost functions are linear or
quadratic. Instead, when using nonlinear demand functions, it is not easy to obtain an explicit form
of the reaction functions. In fact, the optimization problem (5) may have a non unique solution, and
even in the case of uniqueness the expression of the corresponding reaction functions may be quite
involved. As we have shown in section 2, one of the lucky cases where nonlinear reaction functions
can be easily obtained starting from a suitable nonlinear reaction function is obtained by using an
isoelastic demand function associated with linear costs.

In order to make such a comparison, in the following we shall focus our attention on duopoly games
with isoelastic demand functions.



4 Cournot game with an isoelastic demand function and linear costs

In this section we consider a duopoly model with the following isoelastic demand function
1
= ,Q2) = ————=, a>0 22
p f(QI Q2) (Ch n q2)a ( )

that for o = 1 reduces to the case studied by Puu (1991). The model (17) with n = 2 and demand
function (22) becomes a two dimensional dynamical system, defined by iterated map

Gt +1) = 2aq1(t) — — (@1(t) + ax(t)) (e1 (@1 (t) + ga())* — 1)

2 2a
(23)
@t +1) = 50— 5o (@) + @) @ (@) + ) ~1)

The following proposition holds (the proof is in the Appendix)

Proposition 4. If a < 2 the dynamical system (23) has a unique nonvanishing equilibrium, given

by ¢* = (47, ¢3), with
1/2-« e+ (l—a)
a\c1+c c1+co
12—« a+e(l—a)
q2_a c1+ ¢ c1 + Co

% This equilibrium is always locally asymptotically stable.

o=

q =

Q=

which is positive if a > 1—

According to proposition 1, a positive fixed point of (23) is also a Nash equilibrium of the Cournot
duopoly game with best reply. Of course, for o = 1 the positive equilibrium coincides of the positive
equilibrium (10) of the duopoly model with best reply studied by Puu. Proposition 4 states that such
equilibrium is always stable under the local monopolistic adjustment mechanism. This contrasts with
the results on best reply dynamics discussed by Puu (1991, 1998), see also Puu (2000), and described
above. So, in this particular case we can conclude that even if less rational and less informed players
introduce rough approximations and correct their decision process every period, they converge to the
optimal outcome (Nash equilibrium) for a wider range of parameters than in a game with players that
know the true nonlinear demand and at each time step play the best reply. Indeed, in the case of
isoelastic demand and linear costs, the convergence to the Nash equilibrium of the process with LMA
is always ensured, whereas for certain sets of parameters the best reply dynamics does not converge
to it. So, in this case we may guess that less rationality (and information) implies more stability.

However, we want to stress that this statement is obtained through a comparison of the stability
region in the space of parameters (c1, c2), in the sense that the Nash equilibrium g* is stable in each
points of the plane of the parameters (cq, c2) for the model with LMA, whereas the stability only holds
in the subset ¢1/c2 € (3 — 2\/@, 3+ 2\/5) in the case of best reply adjustment. Different conclusions

10



are obtained if we compare the basins of attraction. In fact, with cost parameters such that the
Nash equilibrium is stable under both the adjustment mechanisms, larger basins of attraction can be
observed for the model with best reply. This can be seen, for example, by a comparison of fig. 2 and
fig. 1b, obtained with the same parameters ¢c; = 1 and co = 0.7, where fig. 2 represents the basin of
attraction (white region) of the stable Nash Equilibrium of the model (23) with LMA.

Insert Fig. 2

5 Case of isoelastic demand, linear costs and n players

A question which is often discussed in the literature on oligopoly games concerns the effect on stability
of the number of players. In general this issue is not an easy task, because an increase in the number
of players implies an increase in the dimensions of the dynamical system. To obtain some insight
into this question, let us consider an oligopoly game with LMA in the form (17) and let us assume

homogeneous products. Then the inverse demand function assumes the form

p=f(Q)
where @) = >" | g; is the total output in the oligopoly market. In this case the model (17) becomes
1 ci — f(Q())
Git+1)=-q¢t)+ —- i=1,..,n 24
E+D =540+ 55w 2y

being f! = f'(Q(t)) for each i. This n-dimensional dynamical system in the dynamic variables g;

can be reduced to a one-dimensional dynamical system in the total quantity Q(¢) by summing up the

equations (24)

7 —nf(Q()
2f(Q(t))

where v = " | ¢;. The dynamic equation (25) of the aggregate production includes the number of

QU +1) = 5Q0) + (25)

players n € N as a parameter. So, we can investigate the effects of this parameter on the dynamics of
the global production.

It is trivial to see that if (¢f,...,q}) is a steady state of the disaggregated dynamical system (24),
then Q* = Y ' | ¢ is a steady state of the aggregated dynamical system (25). In particular, if
(g, ---,q7) is a Nash equilibrium, then it is a fixed point of (24) and consequently it corresponds to a
fixed point of 25). However, the converse is not true in general, because a fixed point Q* of (25) can
correspond to several different arrangements of (g, ..., ¢,), that do not correspond to fixed points of
(24).

We now consider the model (17) with n firms and homogeneous products in the case of isoelastic
demand function

p=f(Q) = (26)

1
Q

11



Puu (1996), Agiza et al. (1998), Agliari, Puu and Gardini (2000) considered some particular cases
with 3 or 4 competitors that repeatedly play the oligopoly game according to the best reply dynamics,
given by the dynamic equations

1 n n ‘
¢(t+1)=— Z qj — Z g , 1=1,..,n (27)

Ci =
J=Lj#1

and showed several kinds of dynamic situations where the convergence to a Nash equilibrium does not
occur. Indeed, quite complex dynamic scenarios may arise, characterized by periodic, quasi-periodic
or chaotic motion.

If we assume LMA the dynamical system (24) with n players and inverse demand function (26)

becomes

G+ 1) = 5 [0() + Q) — QM) i=1,.m (28)

and the one-dimensional map (25) that describes the time evolution of the aggregated output Q(t)

becomes

QU +1) = 5 [1+n Q] Q) (29)

where v = )" | ¢;. This is a quadratic one-dimensional map, topologically conjugate to the standard
logistic map z(t + 1) = pa(t) (1 — x(¢)) through the linear homeomorphism @ = z(1 4+ n)/vy and with

the parameters related by
_1+n
p=—

So, the time evolution of the aggregated production can be deduced from the well known properties

of the logistic map (see e.g. Devaney, 1989). In particular, we are interested in the role of the integer
parameter n.

First of all, we notice that the dynamics of (29) converge to the positive steady state Q* =
(1+n—2)/~ provided that n < 5, corresponding to the well known condition p < 3. The convergence
is monotone if n < 3, whereas it exhibits damped oscillations if 4 < n < 5. With 6 players we have
p = 3.5, hence we have stable oscillations of period 4 being > 1 + /6. The case of 7 competitors
gives fully developed chaos, as it corresponds with u = 4.

Hence, stability is obtained for a limited number of oligopolists, namely n < 5, and instability

occurs increasing the number of players.

6 Duopoly with isoelastic demand and quadratic costs

In this section we consider the duopoly model with isoelastic demand function (8) and quadratic costs
(18). The best reply dynamics cannot be expressed by a simple dynamical system. In fact, the profit
of player i is m; = ¢;i/ (@1 + q2)2 — Cim — ¢iq?, and the first order conditions for profit maximization

12



give rise to a third degree algebraic equations. For example, the condition for the reaction function of
player 1 becomes
2c14} + 4c1g203 + 2c13q1 — g2 = 0.

So, even if it is easy to see that a unique positive solution ¢; = r1(g2) exists, its expression is not easy
to be handled. Instead, if we consider the dynamics with LMA (19) with isoelastic demand (8) and
n = 2, a simple two-dimensional dynamical system is get, represented by the following two-dimensional

iterated map:

2q1(t) + ga(t)
2(1 + ci(qi(t) + q2(1))?)

qt+1)=

(30)

q1(t) + 2q2(t)

2T = S ol + )

The following proposition holds
Proposition 5. The dynamical system (30) has a unique nonvanishing equilibrium, given by
q* = (¢7,43), with

q = Ve =
! \/a+\/a\/2,/6162

&% = Vel -
2 \/a‘|‘ \/5 2,/6162

This equilibrium is always locally asymptotically stable.

The proof of this proposition is given in the Appendix.

According to Proposition 1, q* is a Nash equilibrium, located at the intersection of the reaction
functions. As we do not know an explicit expression of the reaction functions it is impossible to study
its stability under best reply. However, the Nash equilibrium reveals a strong stability under LMA.
Simulations show that even the basins of attraction are large if compared with the case of the model
with LMA and linear costs.

7 Summary and further developments

In this paper we proposed a repeated oligopoly game where we assume that the players do not know
the demand function of the market in which they operate, and at each time step they solve a profit
maximization problem by using a linear approximation of the demand function, based on the local

estimate of its partial derivative, and neglecting the outputs of the competitors. A similar adjustment

13



mechanism has been recently proposed by Tuinstra (2004) for a price a price adjustment process,
and an explicit dynamical system is obtained for linear cost functions. Instead, our quantity-setting
local monopolistic approximation (LMA) gives rise to explicit discrete-time dynamical systems for any
differentiable demand function provided that linear or quadratic cost functions are considered.

As the oligopoly game obtained under the assumption of LMA has the same equilibria of the best
reply dynamics (i.e. Nash Equilibria) we tried to compare the stability properties of such equilibria
under these two different kinds of dynamic adjustments. Such a comparison has been performed by
using one of the simplest nonlinear demand functions, the isoelastic one, and linear cost functions. In
fact, this is one of the lucky cases where the reaction functions can be analytically computed (Puu,
1991) and consequently the dynamical system that gives the best reply dynamics can be explicitly
written. The results obtained for this particular example show that the adjustment process based
on LMA is more stable than the best reply dynamics, even if it is characterized by a lower degree of
information and rationality. Furthermore, we showed that the stability of Nash equilibrium also holds
when quadratic costs are considered.

In the case of homogeneous products with an isoelastic demand function and linear costs we also
analyzed the effects of increasing the number of competitors in the market, and we showed that more
players may lead to periodic and chaotic motion.

As the dynamic adjustment mechanism proposed in this paper allows us to get an explicit dy-
namical system for any arbitrary nonlinear and differentiable demand function, provided that the cost
functions are linear or quadratic, a plethora of dynamic model can be studied to get a comparison of
stability and dynamic properties under several economic assumptions on nonlinear demand functions
that characterizes the economy. In particular, the robustness of the statement "less rationality (and
information) implies more stability" given in this paper on the basis of the example with an isoelastic
demand function, can be analyzed by considering other examples obtained with different kinds of
demand functions.

Another remark about future work, that may be done in the framework of oligopoly games with
LMA, concerns the presence of denominator in the maps (17) and (19). Indeed, some interesting
dynamic phenomena can be expected, related to the peculiar properties of maps with a denominator
that vanishes in a zero-measure subset of the state space, as stressed in Bischi, Gardini and Mira
(1999, 2003).

Of course, a similar adjustment mechanism can be applied to Bertrand oligopoly games, and even
in the mixed case where some players play a Cournot game and some other ones play a Bertrand game
(see e.g. Bylka and Komar, 1976, Cheng, 1985, Onozaky and Matsumoto, 2003).
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Appendix.

Proof of proposition 1

Necessary conditions for (5) are expressed by the first order conditions

s Af (g N ; /
aqi(atln _ (ta—;(lt)flz)(t—i_1))q,~(t+1)+fl(qi(t+1),qel-(t+1))—C’Z-(qi(t—i—l)) —0 (32)

At a steady state we have ¢;(t +1) = ¢;(t) = ¢ and ¢°,(t + 1) = ¢—i(t) = ¢*,;. So, the conditions
(32), that define the best reply dynamics, at a steady state become

@ fia, ats) + Fia,a) = Cilg)) ,i=1,...,n.

This is the equation whose solutions are the Nash equilibria of the Cournot oligopoly game. The first
order conditions of the game with LMA (15), at a steady state, become

flai+ filq, @) = Ci(q) ,i=1,...,n.

So, we obtain the same equations at the equilibria both in the case either firms have a perfect knowledge

of the demand function, or when they use the local monopolistic approximation. [

To prove the propositions 2 and 3 we follow arguments similar to those given in Tuinstra (2004).
These are based on the following result (see e.g. Atkinson, 1989): Let A be an eigenvalue of the matrix
A and let [|-|| be any matrix norm. Then |A| < [|A[|. Now, if we consider [|Al|,, = max; > 7, [Al
then a sufficient condition for the eigenvalues of A be inside the unit circle is

Z |Ajj| <1 foralli=1,...,n (33)
j=1

Proof of proposition 2.
Let J denote the Jacobian matrix of (17) computed at g*. Its diagonal entries are

(ci — £ (a")) fi (q)
2 (fi (q7))

[

and the off-diagonal entries are




So, the sufficient condition (33) becomes

i — f(q")]] iii(q*)|+z fi @)+ (e~ (@) £; (@) <2 foralli=1,..n  (34)

e 2 P (k)2

(ff (av)) i (ff (a"))
According to Proposition 1, a Nash equilibrium is a fixed point of the map (17), hence q* = (¢7, ..., ¢
satisfies the steady-state equations

ci— fi(a*) = g/ fi(a")
by which (34) is transformed into (20) CJ.

Proof of proposition 3.
Let J denote the Jacobian matrix of (19) computed at q*. Its diagonal entries are

a”) (i (a) — aq))
2 (fi(q*) — i)’

i

and the off-diagonal entries are

oo B (e — £ (@) + i (@) (1 (9) — cigp)
! 2(f (@) — i)

So, the sufficient condition (33) becomes

£ (@) — cagt| |1 ()] = | (@) (e = F (@) + S () (F (a”) = eiqi)
X 2 +Z : 2
(fl (a*) — i) i (fi (@) — )

<2 foralli=1,...,n

(35)
According to Proposition 1, a Nash equilibrium is a fixed point of the map (19), hence q* = (g7, ..., ¢}})
satisfies the steady-state equations

g; f{(a*) = 2qfci — f{(a*)
that can be written as
F@") —gici = g (ci — fi(Q))
by which (35) is transformed into (21) .
Proof of proposition 4

The equation to find the fixed points, obtained by setting ¢;(t + 1) = ¢;(¢) in (23) becomes

@1+ 2 (@) + a2t) (e1 (@a(t) + @2(£)* —1) =0 0
@+ 5 (@) + () (@ (af ) =0
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After adding the two equations, we get

2—a
1+ co

(1 + @) =

This equilibrium condition shows us that a non vanishing steady state exists only if a < 2. We can

2—«a
ci+c2

which we get ¢f as in proposition 4. From the expression of ¢ we have that ¢ > 0if o > 1—ca/c1. As

1/a
use this equation to substitute, for example, g = —q1 + ( ) in one of the equations (36), from
« is a positive parameter, this condition restricts the range of a only in the case co < ¢1. Analogously,
g3 > 0if @ > 1 —¢1/ce, and this condition restricts the range of o only in the case ¢; < ca.
The study of the stability of the equilibrium (gj,q3) is particularly easy. In fact, the Jacobian
matrix for the map (23)
t— i lla+Da(a+q)*—1 —5la(a+1)(g+q)* —1] ]

J(q1,92) = [ —Lleala+ (g +g)* -1 =L (a+eaqn +g2)* — 1]

computed at the equilibrium

L& e+ Dazs —1] & |ale+ )2 -1

J(qiq;) _ c1+c2 c1+c2
L [CQ(a +1)2e 1] 1_L [(a +1)er25e — 1}
gives the simple characteristic equation
1+« «
A — A —=0.
2 + 4

Hence the eigenvalues are A\; = 1/2 and A2 = a/2. This implies that the equilibrium (g, ¢5) is
locally stable for each « in the range 0 < o < 2 .

Proof of proposition 5

The equations to find the fixed points, obtained by setting ¢;(t + 1) = ¢;(¢) in (30), become

2 2 =
ciq1 (@1 + Q2)2 Q2 (37)
20002 (1 +@2)" =q1

from which % = Z—f and consequently ¢1 = , /¢2go. Substituting this into one of the equations (37)
we get the equilibrium (31). Sufficient conditions for the stability of q* are easily obtained from the
computation of the Jacobian matrix J = (J;;) of (30) at the equilibrium q*. In fact, the diagonal

entries are

7 V1C B 3¢1/C2
2(fl(a") —c1)  3eiy/ +cver + 2e/a
Jio—_ BIB(A) 3cay/c1
11 —

2) " 3eo\/c1 + con/Ca + 201,/c2

[\)
—
S
—
o)
*
~—
|
Q
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and the off-diagonal entries are

T — G fia(dY) + f3(a¥) _ c1y/C2 — o /C1
2 2(fl(q") —c1)  3aiyes o+ 2e/a
Jop = G fHaf) + fa) c24/C1 — c14/C2

2(f2(q") —c2) 3o/l + /e +2c1,/c2

Hence, the trace of the Jacobian matrix at the equilibrium is

T 301\/62 i 301\/62
r =
3c14/Ca + c14/c1 + 2¢04/c1 3c14/Ca + c14/c1 + 2¢04/c1

and the determinant is

6162(21 /c1Co + €1 + Cg)
(361\/6 + 01\/a + 262\/5) (361\/6 + 61\/a + 262\/5)

A set of sufficient conditions for the stability of q*, i.e. for the eigenvalues to be inside the unit circle

Det =

of the complex plane, is given by

1+Tr+ Det>0; 1—Tr+ Det>0; Det<1 (38)

(see e.g. Medio and Lines, 2001, p.52). These conditions become trivial in our case. In fact, being T'r

and Det both positive, the first condition is always satisfied. Moreover

46102 (02\/a +c1 + 02)

(301\/6 + Cl\/a + 262\/5) (301\/0_2 + 01\/a + 202\/a
and Det < 1 being cica(2\/c1¢2 + ¢1 + ¢2) < (301\/6 +c1y/c1 + 202\/0_1) (301\/5 +c1y/c1 + 202\/5).

1—Tr+ Det = )>()
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Figure Captions

Fig. 1. Duopoly model with isoelastic demand (8), linear costs and best reply dynamics (a) A
chaotic trajectory obtained with parameters ¢; = 1 and ¢z = 0.161. (b) For the same model with
c1 = 1 and co = 0.7, the white region represents the basin of attraction of the stable Nash Equilibrium,
located at the intersection of the reaction curves, whereas the grey region represent the set of initial
conditions that generate unfeasible trajectories.

Fig.2. Duopoly model with LMA dynamics, obtained with isoelastic demand (8) and linear costs.
The parameter values are the same as in fig. 1b. A typical trajectory that converges to the Nash
equilibrium is also represented by dots labelled by 0,1, ...
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